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Abstract

Socially interacted behaviors under incomplete information can be modeled as equilib-

rium outcomes of a simultaneous move game. Parameter identification and estimation can

be based on the equilibrium expected outcomes. When there are asymmetric information on

the exogenous characteristics, the equilibrium expectations are heterogeneous, varying with

both individual’s traits and the private information used to make predictions. When there

are multiple equilibria, the set of equilibrium expectations are a set of functionals defined

on the space of private information, which has not been fully characterized in the previous

literature. Utilizing the intersection theory of differential topology and functional fixed point

theorems, we find that when all exogenous characteristics are public information and only

the idiosyncratic shocks are privately known, the set of equilibria is composed of a finite

number of vectors and can be computed via the homotopy continuation method. When some

exogenous covariates are private information, the equilibrium set is compact in a Banach

space and can be approximated by a finite number of equilibria. Thus, it can be numerically

computed using basis functions, Gauss-Legendre quadrature, and the homotopy method.

Attaching a probability mass function to this approximated set, a computationally-feasible

approximation of the complete sample likelihood is derived. Estimation is achievable by

either maximizing the likelihood function or using simulated moments. This paper supple-

ments the economic theory on games with multiple equilibria and extends the all-solution

method for estimation of discrete choice games to a general framework incorporating dis-

crete and continuous choices, bounded and unbounded outcomes, as well as different types

of incomplete information. This method is especially useful for the model with peer effects,

where the dimension of the equilibrium conditional expectation functionals can be reduced.

We analyze the binary choice models in detail. Monte Carlo experiments show that our

estimation method performs well. In addition, large estimation biases can occur if impos-

ing equilibrium uniqueness, either the assumed unique equilibrium is computed through

contraction mapping or Newton’s method.
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1 Introduction

Estimating models for social interactions with possible multiple equilibria is a challenging issue

both theoretically and empirically. The distribution of outcomes is influenced by not only

the unknown parameters, but also the underlying equilibrium which is actually played but not

observed. Without further specifications, with any given parameter values, the sample likelihood

or moment conditions are still indeterminate and cannot be used for estimation. Bajari et

al.(2010a) propose a two-step algorithm to estimate a discrete choice game under incomplete

information. They first derive nonparametric estimates for players’ choice probabilities and

then use them to estimate other structural parameters. When there are a large number of

repetitions of the same game, under the assumption that the same equilibrium is played for all

the repetitions, the individual choice probabilities can be estimated consistently. However, in

empirical studies of social interactions, especially interactions among friends, it is frequent to

work with cross-section data sets. For data sets with individual information over years, there

is also a problem with the evolution of social relations, which makes it unrealistic to assume

that the same equilibrium is played repeatedly. This method, nonetheless, can still be used

for some special model structures or under some additional assumptions. For example, when

individual outcomes are influenced by a global equilibrium aggregate, Bisin et al.(2011) first

estimate the equilibrium aggregate and then recover other parameters. Leung(2015) focuses

on one particular type of equilibria, where individuals with the same observable characteristics

play the same strategy. With a large number of independent groups and/or a large number of

agents playing the same strategy, repetitions are derived. However, the method by Bajari et

al.(2010a) would be invalid with the presence of unobserved group heterogeneity which cannot

be fully explained by observed characteristics. For social interaction models with potentially

multiple equilibria, without assuming repetitions of the same equilibrium, this paper proposes

using a parametric stochastic rule to specify a probability distribution of equilibrium selection.

Although this method requires solving or approximating equilibria, it can be applied to a general

model framework and data generating processes, including both discrete and continuous choices,

bounded and unbounded outcomes, and incomplete information about idiosyncratic shocks and

exogenous characteristics. In a related paper, Bisin et al(2011) choose both the parameter values

and equilibria to maximize the sample likelihood function. That method is implicitly built on
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a particular selection distribution. That is, exactly one equilibrium is chosen with probability

one. However, that specification cannot lead to economic implications on equilibrium selection.

Moreover, if the likelihood function is of a complicated form, it might be difficult to maximize

likelihood when choosing both parameter values and equilibria.

Using a stochastic rule to complete a game with multiple equilibria is not new in the litera-

ture of game estimation. Bajari et al.(2010b),(2010c) use this method to identify and estimate

discrete choice games under both complete and incomplete information. However, it is not

straightforward to make this approach applicable to various empirical studies in social inter-

actions under incomplete information. Socially interacted behaviors can be either discrete or

continuous, bounded or unbounded. Moreover, in Bajari et al.(2010b),(2010c), only the idiosyn-

cratic shocks are private information. In their recent research, Yang and Lee(2017) point out

that there can also be incomplete information about some exogenous characteristics for social

interactions. For example, when analyzing peer effects in class performance, class and individ-

ual characteristics such as grades, locations, genders, SAT scores, and IQ scores are often used

as exogenous covariates. It would be unrealistic to assume that individual SAT scores and IQ

scores are public information. Nonetheless, incorporating various types of behaviors and infor-

mation structures makes it more difficult to specify the probability distribution of equilibrium

selection and compute the likelihood of the complete model.

The difficulty in specification comes from the equilibrium set. The structure of Nash equilib-

ria for a game with complete information has been well understood. So is that for a finite-player

finite-action game under incomplete information. However, the existence of a pure strategy equi-

librium in a game with private information when the number of possible actions and types are

not finite has been an open question for a long time. Following the pioneering work by Mil-

grom and Weber(1985) and Radner and Rosenthal(1982), Khan and Sun(1995) and Kan and

Zhang(2014) provide existence conditions when the set of actions is compact. Although their

conditions apply to general abstract private information, in many empirical applications, it is

unsatisfactory to restrict the values of outcomes to be bounded. Moreover, as our model is

based on a reduced-form Bayesian Nash Equilibrium (BNE), their conditions about the payoff

functions may not be directly applied. Therefore, we characterize the equilibrium set and derive

conditions for existence and equilibrium properties specific to our framework.
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It is shown that, in terms of the distribution of outcomes, a BNE is equivalent to an equilib-

rium conditional expectation of individual choices, which are functions of the private information

used to make predictions. Therefore, the equilibrium conditional expectations are used to rep-

resent BNEs. Particularly, if all exogenous characteristics are public information and only the

idiosyncratic shocks are privately known, conditional expectation functions reduce to vectors in

an Euclidean space satisfying a system of nonlinear equations. By the transversality theorem

and the intersection theory in differential topology, it is shown that under certain regularity

conditions, there are a finite number of equilibria. Another result is a sufficient condition for

equilibrium uniqueness, which is weaker than the condition derived from contraction mapping

by Yang and Lee (2017). When some exogenous characteristics are private information and

they have a continuum support, the equilibrium conditional expectations are generally func-

tions. They are embedded into a Banach space of functions, which is related to the classical

Lp spaces for integrable functions. By the Schauder fixed point theorem, sufficient conditions

are derived, which ensure that the set of equilibria is nonempty and compact. As a result, the

set of equilibria can be approximated by a finite number of equilibria. With a finite number of

elements in the (possibly approximated) equilibrium set, a probability mass function for equi-

librium selection can be specified based on a parametric selection rule. That completes the

model.

By the strategy of “identification at infinity” and techniques in spatial econometrics, pa-

rameters can be identified for the linear model with continuous choices, the model with binary

choices, and the Tobit model. Challenges in estimation come from computation. When all

exogenous characteristics are public information, solving for the set of equilibria is equivalent

to getting all solutions to a system of nonlinear equations. According to Garcia and Zang-

will(1981), it is possible to get all solutions via a homotopy continuation method under the

regularity and path-finiteness condition, when the system can be extended to complex spaces

in an analytic way. It is verified that those conditions hold for a couple of models with normal

shocks. There are also discussions about the application of another related homotopy algorithm,

used by Borkovski et al.(2010a) and (2010b). There is also a brief discussion about group un-

observables, peer effects, and a deterministic selection rule. For models with peer effects, it

suffices to focus on conditional expectations about group average outcomes. Hence, an equilib-
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rium can be represented by a vector-valued function with less coordinate functions than that in

the general model framework.

Particularly, this paper discusses about two types of binary choice models in detail. In the

Type I model, agents take one of two actions, 0 and 1. The utility for choice 0 is normalized

to 0 for every agent. When an agent chooses 1, however, her utility depends on the number of

agents who are associated with her and also choose 1. Two key features of this model is that

ex post, the agents who choose 0 are not affected by others and have no effects on the utilities

of agents who choose 1. The entry game is a case in point. The Type II model does not have

these two properties. Like the model discussed in Brock and Durlauf(2001), in the Type II

model, the utility an agent can get depends on the difference between her choices and those

of the agents who she is associated with. With normal idiosyncratic shocks, it is more likely

to have multiple equilibria in the Type II model than it is in the Type I model. Additionally,

by comparing different estimation methods in the Monte Carlo experiments, it is found that

assuming equilibrium uniqueness can bring in biases when the intensity of social interactions is

large and there are multiple equilibria in the data generating process.

The paper proceeds as follows. The model framework is introduced in Section 2. Sections

3 and 4 contain a detailed analysis of the set of equilibria, identification, and estimation for

two different types of information structures. In Section5, we discuss in detail how to achieve

dimension reduction when considering the influence from group peers. Section 6 focuses on

equilibrium set characteristics and Monte Carlo experiments of two types of binary choice

models. Section 7 concludes. Technical proofs are put in Appendices B through F. In Appendix

H, there are extensions on group unobservables and discussions about deterministic rules of

equilibrium selection.

2 Models

2.1 A Model Framework

The discussion of multiple equilibria is in the framework for social interactions under a general

form of incomplete information analyzed by Yang and Lee (2017). Consider a group of n socially

related agents. Their relations are represented by an n× n matrix Wn. For any i, j = 1, · · · , n,
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Wn,ij ≥ 0. Wn,ii = 0 for all i = 1, · · · , n. For any i 6= j, Wn,ij > 0 if i connects with j; and

Wn,ij = 0 otherwise. Take a game with n players for example. As the payoffs of any two agents

are interdependent, Wn,ij = 1 for any i 6= j; and Wn,ii = 0. This social relation matrix can

also be used in the model for peer effects in a social group, where the behavior of an agent is

related to those of all the other group members. If Wn is used to represent the spatial relations of

geographic regions or local governments, Wn,ij is usually negatively correlated with the distance

between i and j. In that case, Wn is symmetric. If we use Wn to represent friendship networks,

Wn will be symmetric if only mutual friendship are considered. However, if the network is

directed, it is possible that i considers j as one of her close friends while j does not regard i as

her good friends. Then Wn may be asymmetric.

Let y∗i denote the latent variable. The observed outcome, or agent’s behavior, yi, depends

on y∗i in the following way:

yi = hi(y
∗
i ), (2.1)

where hi(·) : < → < is a real-valued function, which can be linear or nonlinear. In the general

setting, we allow the form of this function to vary across agents. In applications, we usually

have hi(·) = hj(·) = h(·). The latent variable for i is related to her expectations about the

outcomes for other agents as

y∗i = u(Xi) + λ
∑
j 6=i

Wi,jE[yj |Xp
Ji
, Z]− εi. (2.2)

According to (2.2), the value of y∗i depends on three parts. The first part, u(Xi), represents

the direct effects of exogenous covariates, Xi = (Xg, Xc
i , X

p
i ). We consider the group features,

Xg; some commonly known individual characteristics, Xc
i , and some personal features which

may be privately known, Xp
i . The third part is the idiosyncratic shock, represented by εi. Those

shocks are i.i.d. and independent of all the exogenous characteristics and social relations. Their

identical distribution is characterized by a pdf function, fε(·), with its cdf, Fε(·). Assume that

εi is known by individual i herself, but not by other agents or econometricians. The second

part represents the interaction effects from socially associated agents. There are two features

in this formulation. First, y∗i is affected by agent j only if i connects with j; i.e., Wn,ij 6= 0.

Second, j influences i through i’s expectation on j’s true outcome. In the model, i’s expectations

are made on the basis of public information about social relations in Wn, group features, Xg,

5



commonly known individual characteristics, Xc
j ’s, and her private information about exogenous

characteristics, Xp
j ’s. The information structure can be fully described by specifying the subset

of agents whose Xp
j ’s are known to an agent. Given a finite number of agents, this is achievable

using vectors. For each i, we define an n × 1 vector, Ji, such that Ji(j) = 1 if i knows Xp
j ;

and Ji(j) = 0 otherwise, for each 1 ≤ j ≤ n. As a result, information structure in a group of

n agents is represented by an n2 × 1 vector, J = (J
′
1, · · · , J

′
n)
′
. For every i, we define by Xp

Ji
,

the vector formed by Xp
j ’s, which are known to i, Xp

Ji
= (Xp′

j : Ji(j) = 1)′. Suppose that Xp
j is

of dimension kp. Then the dimension of Xp
Ji

is Ni = (
∑n

j=1 Ji(j))kp.
1 To simplify notation, we

summarize all the publicly known variables in one vector,

Z = (Xg, Xc′
1 , · · · , Xc′

n ,Wn,11, · · · ,Wn,1n, · · · ,Wn,n1, · · · ,Wn,nn, J
′
1, · · · , J

′
n)
′
. (2.3)

Then we sum up i’s information set used to make predictions by two random vectors, one

about private information, Xp
Ji

, and the other about public information, Z.2 The parameter,

λ, represent the intensity of social interactions. If λ > 0, the social interaction effect is positive.

If λ < 0, outcomes are negatively related. The case of λ = 0 represents absence of social

interactions.

The model, (2.1) and (2.2), is general enough to include different types of outcomes, such

as the continuous outcomes and binary choices in Yang and Lee(2017) and the tobit model i

Yang, Qu and Lee(2016). There are also other applications.

1. (Linear Model with Continuous Choices) If hi(d) = d for all i and d ∈ <, we have that

yi = u(Xi) + λ
∑
j 6=i

Wn,ijE[yj |Xp
Ji
, Z]− εi. (2.4)

2. (Binary Choice Model I) If hi(d) = I(d > 0), for all i and d ∈ <, where I(·) is the

indicator, we have that

yi = I(u(Xi) + λ
∑
j 6=i

Wn,ijE[yj |Xp
Ji
, Z]− εi > 0). (2.5)

1For example, if 1 only knows Xp
1 , Xp

2 and Xp
3 , J1(j) = 1 for j = 1, 2, 3; and J1(j) = 0 for j > 3, and

Xp
J1

= (Xp′

1 , X
p′

2 , X
p′

3 )
′
. We assume that such an information structure J is common knowledge. However, the

realizations of those random variables are private information. In this example, although it is publicly known
that agent 1 knows her own features and those of agents 2 and 3, the realizations of Xp

1 , Xp
2 and Xp

3 may be
unknown to agent 4.

2As it is explained in Yang and Lee (2017), because the idiosyncratic shocks, εi’s are independent of each
other and they are also independent of the exogenous covariates and social relations, adding the realization of εi
to her information set does not change i’s predictions on others’ outcomes.

6



3. (Binary Choice Model II) Based on the assumption that agents drive utilities from tak-

ing actions similar to their friends and/or neighbors, Brock and Durlauf(2001) consider

another model for binary choices, yi = 1 or − 1, according to hi(d) = 2I(d > 0)− 1, and

yi = 2I(u(Xi) + λ
∑
j 6=i

Wn,ijE[yj |Xp
Ji
, Z]− εi > 0)− 1. (2.6)

4. (Tobit Model with Homogeneous Cutoff Points) If all negative outcomes are censored, i.e,

hi(d) = dI(d ≥ 0) for all i and d ∈ <, we have that

yi = max

u(Xi) + λ
∑
j 6=i

Wn,ijE[yj |Xp
Ji
, Z]− εi, 0

 . (2.7)

5. (Tobit Model with Heterogeneous Cutoff Points) If hi(d) = I(d > v(Xg, Xc
i )) for all d ∈ <

for i = 1, · · · , n, we have that

yi = I(u(Xi)+λ
∑
j 6=i

Wn,ijE[yj |Xp
Ji
, Z]−εi > v(Xg, Xc

i ))(u(Xi)+λ
∑
j 6=i

Wn,ijE[yj |Xp
Ji
, Z]−εi).

(2.8)

6. (Two-sided Censored Outcomes) If hi(d) = dI(c1 < d < c2) for all i and d ∈ < and some

parameters, c1 < c2, we get

yi = (u(Xi)+λ
∑
j 6=i

Wn,ijE[yj |Xp
Ji
, Z]− εi)(c1 < u(Xi)+λ

∑
j 6=i

Wn,ijE[yj |Xp
Ji
, Z]− εi < c2).

(2.9)

7. (Ordered Multiple Choices) If hi(d) =
∑K

k=0 k(ck < d < ck+1) for all i and d ∈ <, where

K > 1 is a fixed integer, c0 = −∞, c1 < · · · < cK , cK+1 = ∞, we derive the following

model:

yi =
K∑
k=0

k(ck < u(Xi) + λ
∑
j 6=i

Wn,ijE[yj |Xp
Ji
, Z]− εi < ck+1). (2.10)

8. (Investment Decisions with Cobb-Douglas Production Functions) At last, consider inter-

actions in investment among competing firms or contiguous local governments. y∗i denotes

the latent investment. yi represents the output. Assume that output is influenced by tech-

nology A, the labor input Li, as well as the capital investment. Since investment cannot

be negative, the actual investment is max {y∗i , 0}. Assume that A can be estimated from

other data sources. Li’s are public information and exogenously given. The potential
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investment y∗i is still determined by (2.2). With a Cobb-Douglas production function,

yi = hi(y
∗
i ) = AL1−ι

i (max {y∗i , 0})ι, (2.11)

where o < ι < 1.

Various information structures can be discussed in this framework.

1. (Publicly-known Characteristics) If all exogenous covariates are public information, Ji =

1n, for all i = 1, · · · , n, where 1n is an n× 1 vector of 1’s.

2. (Self-known characteristics) If Xp
i is revealed just to agent i, for any i = 1, · · · , n, Ji(i) = 1

and Ji(j) = 0 for all j 6= i.

3. (Socially-known Characteristics) If for any two agents i and j, i knows Xp
j if and only if

i connects to j, for all i, we have that Ji(i) = 1, Ji(j) = I(Wn,ij > 0) for all i 6= j.

It is shown in Yang and Lee (2017) this model can be built on the basis of a simultaneous

move game under incomplete information. Under generic conditions, there is a one-to-one

correspondence between a Bayes Nash equilibrium and a consistent equilibrium conditional

expectation functional. To facilitate analysis in later sections, the definition of the equilibrium

expectations are a little bit different from that in Yang and Lee (2017). As a result, we put the

details in Appendices A and B.

Assumption 2.1 fε(ε) > 0 for all −∞ < ε <∞. That is, the support for all εi’s is <.

Assumption 2.2 For any real number a, Hi(a) = Eε[hi(a− ε)] <∞ and is differentiable with

respect to a.

Yang and Lee (2017) find a sufficient condition for the existence of a unique equilibrium.

Proposition 2.1 Under the condition that maxi supa |
dHi(a)
da | <∞, if

|λ| ‖Wn‖∞max
i

sup
a
|dHi(a)

da
| < 1, (2.12)

where ‖Wn‖∞ = max1≤i≤n
∑n

j=1Wn,ij, there is one unique equilibrium in the model.

Proof. See the Appendix in Yang and Lee (2017).
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With a unique equilibrium, the model, (2.1) and (2.2), will be complete. Parameters can

estimated using standard likelihood or moment conditions. According to (2.12), in order to

ensure a unique equilibrium, the possible range for the intensity of social interactions, λ, depends

on the number of links and the derivative of the functions, Hi(·)’s. If they are large, the range for

λ will be very narrow. If Wn represents the relations among n players in a game, ‖Wn‖∞ = n−1,

which increases with the group population. For the case of peer effects, ‖Wn‖∞ = 1, which is

constant. Actually, in the literature of social interactions, it is conventional to row-normalize Wn

so that ‖Wn‖∞ = 1, which helps alleviate the problem. For example, with row-normalization,

it is shown in Yang and Lee (2017) and Yang, Qu and Lee (2016) that |λ| < 1 is sufficient for

the existence of a unique equilibrium for the continuous choice model, the binary choice model

and the Tobit model with zero cutoffs. However, for some models, such as the Tobit model

with heterogeneous cutoff points and the model of ordered multiple choices listed in this paper,

maxi supa |dHi(a)/da| can be very large. See also Yang (2014) for a similar case in the sample

selection model. Moreover, by imposing |λ| < 1, possible strong interactions are excluded.

This paper investigates model estimation without imposing Assumption (2.12). It is shown

that the method of random equilibrium selection in Bajari et al (2010b) and (2010c) can be

extended to this general framework for social interactions. Suppose that an equilibrium ξe is

selected from the set of equilibria, E(X,Wn), according to probability measure,

µe(γ(·;X,Wn), α), (2.13)

where γ(·;X,Wn) is a vector-valued criterion function whose coordinates correspond to different

criteria, such as Pareto efficiency and maximal entry rate. α is a parameter vector, attaching

weights to different criteria. Then the full likelihood for y = (y1, · · · , yn)
′

can be written as

L(y;X,Wn) =

∫
E(X,Wn)

n∏
i

f(yi|ξe, X,Wn)dµe(γ(ξe;X,Wn), α), (2.14)

where we apply the independence of yi’s owing to the independence across the i.i.d. idiosyncratic

shocks.

A practical specification depends on characterization of the set of equilibria. Although it is

well established that there are a finite number of equilibria for the finite-player discrete choice

game analyzed by Bajari et al.(2010a),(2010b), and (2010c), as far as I know, there are no

conditions in the literature that can be directly and easily applied to our model framework
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(See Khan and Sun (2002) for a survey of related theories). Therefore, we investigate the set

of equilibria in this model and derive conditions specific to our framework. As it turns out

that the equilibrium sets have different characteristics under different information structures,

according to whether exogenous characteristics are private information or not, we discuss those

two scenarios separately.

3 Estimation with Publicly Known Characteristics

We begin our discussions with the case that all exogenous covariates are public information

and only the idiosyncratic shocks are privately known. In this case, there are just two types

of exogenous characteristics, Xg and Xc
i ’s. Since all expectations are based on public informa-

tion, every agent other than i will form the same expectations on i’s behavior. Therefore, an

equilibrium conditional expectation function ξe reduces to an n × 1 vector, ξe = (ξe1, · · · , ξen)
′
.

In this case, (A.7) can be rewritten as

ξei = Hi(u(Xi) + λ
∑
j 6=i

Wn,ijξ
e
j ), (3.1)

for all i = 1, · · · , n. Given exogenous covariates, X, and social matrix, Wn, define S : <n → <n

such that for all i = 1, · · · .n,

S(ξ;X,Wn)i = Hi(u(Xi) + λ
∑
j 6=i

Wn,ijξ
e
j )− ξi. (3.2)

ξe ∈ <n is an equilibrium conditional expectation vector if and only if S(ξe;X,Wn) = 0.

Therefore, for a group of n agents with publicly-known exogenous covariates, X, and social

relations, Wn, the set of equilibria, E(X,Wn), can be describes as the set of solutions to this

system of nonlinear equations. That is,

E(X,Wn) = {ξ ∈ <n : S(ξ;X,Wn) = 0} . (3.3)

3.1 Characterization of the Equilibrium Set

In this section, we characterize the set of equilibria, E(X,Wn), through inspecting solutions to

S(ξ;X,Wn) = 0. Solving equations is one of the central topics in mathematics. There are a

myriad of well-established results about it. For this particular problem, we employ the oriented

intersection theory to analyze solutions to the equation system, (3.2), aiming to derive conditions
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specific to this model framework. The applications of differential topology for equilibrium

characterizations is not new in economic studies. For example, Debreu(1970) and Dierker(1972)

used these theories to analyze the set of competitive equilibria in an economy. The key idea of

this approach is to deform S(·;X,Wn) and connect it to a function with a simpler form in a

“smooth” way, which is called a homotopy. Implications about the set of zeros of S(·;X,Wn) are

then derived from the set of zeros of that simpler function. Garcia and Zangwill(1981) provide

an intuitive introduction and basic results for this method. In this paper, we utilize some more

general results from the textbook by Guillemin and Pollack(1974) and construct homotopies

tailored to our model framework. In this way, several properties of the set of equilibria and,

especially, a new sufficient condition for the existence of a unique equilibrium can be derived.

We present our main results and leave technical proofs to Appendix C.

Define the function T (·;X,Wn) : <n → <n such that

T (ξ;X,Wn)i = Hi(u(Xi) + λ
∑
j 6=i

Wn,ijξj), (3.4)

for all i = 1, · · · , n. We can see that ξ is a solution to S(ξ;X,Wn) = 0 if and only if ξ is a fixed

point of T . The rate that the Euclidean norm of ‖T (ξ)‖E explodes relative to ‖ξ‖E is crucial

for the existence of an equilibrium.

Assumption 3.1 For any group, X,Wn, there is a real number b < 1, such that3

lim
‖ξ‖E→∞

‖T (ξ;X,Wn)‖E/‖ξ‖E = b. (3.5)

Under Assumption 3.1 and an easy-to-satisfy regularity condition, the conclusions in Propo-

sition 3.1 hold.4

Proposition 3.1 Under Assumptions 2.1, 2.2, C.1, for any regular social group, (X,Wn), if,

in addition, Assumption 3.1 holds, there is r0(X,Wn) > 0, such that all equilibria are within

the open ball B(0, r0(X,Wn)) = {ξ ∈ <n : ‖ξ‖E < r0(X,Wn)} and the number of equilibria is

finite.

Proof. See Appendix C.

3The subscript, “E”, denotes the Euclidean norm.
4See Appendix C for detailed discussions about the meaning and implications of the regularity condition.

Additionally, it is shown that for models where u(·) is linear in Xc
i with a non-zero slope, if dHi(a)/da 6= 0 for

any i and a ∈ <1, almost all groups, (X,Wn), satisfy the regularity condition.
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Finiteness comes from regularity. Regularity implies that all equilibria are isolated. As a

result, in the closed ball B[0, r0(X,Wn)], which is compact and contains B(0, r), the number

of equilibria is finite. Moreover, we can derive a new condition for the existence of a unique

equilibrium.

Proposition 3.2 Under Assumptions 2.1, 2.2, C.1, and 3.1, for a regular group, the total

number of equilibia is odd. In addition, if the Jacobian determinant, det(DS(ξ;X,Wn)), does

not change its sign in the ball B(0, r0(X,Wn)) which contains all equilibria, there is a unique

equilibrium.

Proof. See Appendix C.

Recalling that in Yang and Lee(2017), the sufficient condition for a unique equilibrium is

(2.12). The following lemma shows that condition (2.12) is stronger than the condition in

Proposition 3.2.

Lemma 3.1 When (2.12) holds, sgn(det(DS(ξ;X,Wn))) = (−1)n for all ξ ∈ <n.

Proof. See Appendix C.

The above characterizations of the equilibrium set hinges on Assumption 3.1. It is easy to

see that this condition is satisfied when Hi(·) are uniformly bounded. Therefore, the above

results apply for models with binary choices, two-sided censored outcomes and ordered multiple

choices. It also holds for unbounded (piecewisesly) continuous choices with the magnitude of

Hi(a) increases with the magnitude of a ∈ <1, as long as the increasing rate is not very big.

A case in point is the example of investment choices. Since the elasticity coefficient in the

Cobb-Douglas production function, ι, is between 0 and 1, using Jensen’s inequality, we have

that

|T (ξ)i| = AL1−ι
i

∫
(max

u(Xi) + λ
∑
j 6=i

Wn,ijξj − εi, 0


ι

fε(εi)dεi

≤ AL1−ι
i [

∫
max

u(Xi) + λ
∑
j 6=i

Wn,ijξj − εi, 0

 fε(εi)dεi]
ι

= AL1−ι
i [HT (u(Xi) + λ

∑
j 6=i

Wn,ijξj)]
ι,

where HT (a) = aFε(a) −
∫
c<a cfε(c)dc is the H(·) function corresponding to the Tobit model.
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When E[ε] <∞, HT (a)/|a| ≤ 1 when |a| is sufficiently large. For any i,

|T (ξ)i|
‖ξ‖E

≤AL1−ι
(HT (u(Xi) + λ

∑
j 6=iWn,ijξj)

|u(Xi) + λ
∑

j 6=iWn,ijξj |

)ι
·
( |u(Xi) + λ

∑
j 6=iWn,ijξj |

‖ξ‖E

)ι ‖ξ‖ιE
‖ξ‖E

.

When |λ|‖Wn‖∞ < ∞, the right hand side goes to zero as ‖ξ‖E goes to infinity, for 0 < ι <

1.5Therefore, we derive a condition which can guarantee the existence of a pure strategy BNE

with unbounded piecewisely continuous choices and non-compact private shocks. Our condition,

Assumption 3.1, therefore, is complementary to sufficient conditions about the existence of an

equilibrium for games with private information under general game settings (See Khan and

Sun(2002) for a research survey and Khan and Zhang(2014) for a recent improvement). However,

in some models, to ensure Assumption 3.1 to hold, we need to impose restrictions on the range

of λ, which may be stringent sometimes. The linear model with continuous choices and the

Tobit model are such examples. We discuss how to characterize equilibria in those models.

First, for continuous choices, Hi(a) = a for all i = 1, · · · , n and a ∈ <. S(·;X,Wn) = 0 is

actually a linear equation system:

S(ξ;X,Wn) = u+ λWnξ − ξ = 0, (3.6)

where u = (u(X1), · · · , u(X)n)
′

and ξ = (ψ1, · · · , ψn)
′
. For a regular group, DS(ξ;X,Wn) =

λWn − In is non-singular. Therefore, (3.6) has one and only one solution in that case. That is

to say, for a regular group, in the linear model of socially interacted continuous choices, there

is one and only one equilibrium.

For the Tobit model with homogeneous cutoffs which are normalized to be equal to 0,

Hi(a) = H(a) = aFε(a) −
∫
c<a cfε(c)dc, is unbounded and strictly increasing. S(·;X,Wn) = 0

is a system of nonlinear equations:

S(ξ;X,Wn)i = H(u(Xi) + λ
∑
j 6=i

Wn,ijξj)− ξi, (3.7)

for i = 1, · · · , n. Define pi = E[I(yi > 0)], for all i = 1, · · · , n. There is a one-to-one correspon-

dence between p and ξ, for ξi = E[yi] = H(F−1
ε (pi)) holds for all i = 1, · · · , n. Then (3.7) can

5When ‖ξ‖E →∞, |ξj | → ∞ for at least one j. If |ξk| <∞ for all k with Wn,ik > 0, (
HT (u(Xi)+λ

∑
j 6=iWn,ijξj)

‖ξ‖E
)ι

goes to 0, as ‖ξ‖E goes to infinity. Otherwise, (
HT (u(Xi)+λ

∑
j 6=iWn,ijξj)

|u(Xi)+λ
∑
j 6=iWn,ijξj |

)ι is bounded by 1 as ‖ξ‖E is large enough.

As |u(Xi) + λ
∑
j 6=iWn,ijξj | ≤ |u(Xi)|+ |λ|‖Wn‖∞‖ξ‖E , when |λ|‖Wn‖∞ <∞,

(
|u(Xi)+λ

∑
j 6=iWn,ijξj |

‖ξ‖E

)ι
is also

bounded.
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be written as

Fε(u(Xi) + λ
∑
j 6=i

Wn,ijH(F−1
ε (pj))− pi = 0. (3.7′)

for i = 1, · · · , n. This is a system of equations about p. Because p ∈ [0, 1]n and Fε(·) is bounded,

we can apply Propositions 3.1 and 3.2, for the Tobit model and find an odd number of equilibria

within a ball B(0, r) with r > 1. Similarly, if the cutoffs are heterogeneous and are modeled as

v(Xg, Xc
i ), we have that ξi = E[yi] = H(F−1

ε (pi) + v(Xg, Xc
i )). Then the counterpart to (3.7)

is

Fε

(
u(Xi) + λ

∑
j 6=i

Wn,ijH(F−1
ε (pj) + v(Xg, Xc

i ))− v(Xg, Xc
i )
)
− pi = 0. (3.7′)

3.2 Selection Rule and Complete Likelihood

When there are a finite number of equilibria for a group, to attach a probability of equilibrium

selection is to attach a probability mass to each point in this set. Following Bajari et al.(2010b)

and (2010c), the probability masses are associated with some selection criteria and parameters.

To be specific, let γ(ξe, X,Wn) = (γ1(ξe, X,Wn), · · · , γL(ξe, X,Wn))
′

be a vector composed of

0’s and 1’s representing equilibrium properties. For example, γ1(ξe, X,Wn) = 1 if ξe is Pareto

dominated by another equilibria; and γ1(ξe, X,Wn) = 0 otherwise. γ2(ξe, X,Wn) = 1 if the

equilibrium expected utility is maximal in ξe. For the model with binary choices, we can make

γ3(ξe, X,Wn) = 1, if the number of agents who choose 1 is bigger in ξe than that in any other

equilibria. Similarly, for the Tobit model, we can make γ4(ξe, X,Wn) = 1, if the number of

agents whose behaviors are not censored is maximized at ξe. Let α ∈ <L denote the weight.

Suppose that given a set of equilibia, E(X,Wn), an equilibrium is picked randomly according

to the following random rule: ξe,l is selected if

α
′
γ(ξe,l, X,Wn) + εsl ≥ α

′
γ(ξe,l

′
, X,Wn) + εs

l′
, (3.8)

for any ξe,l
′
∈ E(X,Wn) and l 6= l

′
, where εsl ’s are i.i.d. equilibrium-specific shocks with type-I

extreme value distribution. Therefore, the propabiity that ξe,l is selected is

ρ(ξe,l;E(X,Wn), α) =
exp(α

′
γ(ξe,l, X,Wn))∑

ξ∈E(X,Wn) exp(α′γ(ξe,l, X,Wn))
. (3.9)
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Then the complete likelihood function for an outcome y = (y1, · · · , yn)
′

in a social group is as

follows,

L(y;X,Wn) =
∑

ξe∈E(X,Wn)

ρ(ξe;E(X,Wn), α)
n∏
i=1

f(yi|ξe), (3.10)

which is the basis for identification and estimation.

3.3 Identification

Our analysis about identification is based on the parametric and distributional assumptions

below. First, we assume that the payoff function, u(·), is linear in covariates. Since all exogenous

characteristics are public information in this section, we only need to consider Xg and Xc.

Assumption 3.2 u(Xi) = β0,0 +Xg′β0,1 +Xc′
i β1 for all i = 1, · · · , n.

Assumption 3.3 The pdf for the i.i.d. idiosyncratic shocks, εi’s, is fε(·;σ) with a known func-

tion form and an unknown parameter, σ > 0.

Assumption 3.4 Xc
i ∈ <L and εi’s have full support.

For interactions within one group, the group characteristics, Xg, is absorbed by the constant

term. Therefore, we suppress β0,1 = 0 now.

Definition 3.1 Given social relations, W = Wn, (α, β, λ, σ) and (α̃, β̃, λ̃, σ̃) are observationally

equivalent at Wn, if they imply the same distribution of observables, namely,

FY,X|Wn
(·, ·;α, β, λ, σ) = FY,X|Wn

(·, ·; α̃, β̃, λ̃, σ̃). (3.11)

(α, β, λ, σ) is identifiable at Wn, if any (α̃, β̃, λ̃, σ̃) 6= (α, β, λ, σ) is not observationally equivalent

to (α, β, λ, σ) at Wn.

Different functions hi(·)’s correspond to different types of behaviors. In this paper, we

concentrate on identifying model parameters for three of them, linear model for continuous

choices, binary choices, and the Tobit model for censored outcomes. Those three models are

representative in terms of the relationships between the observed outcomes and the latent

variables. For the linear model with continuous choices, because there is a unique equilibrium

for almost all groups, we can identify β, σ and λ from socially interacted outcomes without
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worrying about equilibrium selection.6 For the binary choice model and the Tobit model,

however, given the possibility of equilibrium multiplicity, the distribution of outcomes will

depend on the probabilities of equilibrium selection and the distribution of outcomes in an

equilibrium. In a nonparametric setting, Aguirregabiria and Mira (2013) identify structural

parameters via exclusion restrictions for a game with discrete choices. Corresponding to the

way that social interactions are specified, we adopt the strategy of identification at infinity and

combine it with techniques in spatial econometrics, when necessary.

Proposition 3.3 In the linear model of continuous choices, for a group with social relations

Wn, denote X̃i = (1,
∑

j 6=iWn,ij , X
c′
i ,
∑

j 6=iWn,ijX
c′
j )
′
,

and X̂i = (1, Xc′
i ,
∑

j 6=iWn,ijX
c′
j )
′
.

Under Assumptions 3.2, 3.3, and 3.4, β0,0, σ and λ can be identified, if

min
1≤i≤n

min eigE[X̃iX̃
′
i ] > 0; (3.12)

or

min
1≤i≤n

min eigE[X̂iX̂
′
i ] > 0, (3.12′)

when Wn is row-normalized, where min eig(·) is the minimal eigenvalue of the corresponding

matrices. Since there is only one equilibrium in the linear model for almost all groups, α is not

identified in this case.

Proof. See Appendix D.

For the payoff parameters, β, λ and σ, in the binary choice model and the Tobit model, we

make the following assumption on the model coefficients.

Assumption 3.5 β1,l 6= 0 for some l ∈ {1, · · · , L}. Without loss of generality, suppose that

l = 1.

Assumption 3.6 The i.i.d. idiosyncratic shocks, εi’s, are distributed according to a mean-scale

family with a pdf, fε(c) = (1/σ)fs((c− µε)/σ), where fs(·) is some known standard distribution

pdf, µε and σ are the location and scale parameters. Normalize µε = 0 and σ = 1.

6As a consequence, the parameter for the selection rule, α, is not identifiable in this case.
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Lemma 3.2 Under Assumptions 3.2, 3.4, and 3.5, for any i and ω−i ∈ {0, 1}n−1, there is a

subset X c(ω) ⊆ <nL such that P (X ∈ X c(ω)) > 0,

and lim|Xc
j,1|→∞,j 6=i,Xc∈X c(ω) P (y−i = ω|Xc) = 1.

Proof. See Appendix D.

Proposition 3.4 In the model of binary choices, for a group with social relations Wn, for any

ω ∈ {0, 1}n−1, denote X̃(ω)i = (1, Xc′
i ,
∑

j 6=iWn,ijωj)
′
. Under Assumptions 3.2, 3.4, 3.5, and

3.6, β and λ can be identified, if for some non-zero vector ω0 ∈ {0, 1}n−1, there is D0 > 0, such

that

inf
D≥D0

min eigE[X̃(ω)iX̃
′
(ω)i|Xc ∈ X (ω)c, |Xc

j,1| ≥ D, j 6= i] > 0. (3.13)

Proof. See Appendix D.

As for the Tobit model, we still use the technique of “identification at infinity” for parameters

of the payoff function. However, since uncensored outcomes are continuous, we cannot fix any

uncensored outcomes as a result of dominant strategy. Nonetheless, when no outcomes are

censored, the distribution of interacted outcomes will be similar to that of continuous choices

in a linear model, where there is only one equilibrium. Therefore, we can identify parameters

for payoffs and shock distributions separately from the parameters for equilibrium selection.

Additionally, different from the binary choice model where those parameters are identified up-

to-scale, in the Tobit model, σ can be identified based on the following relationship about the

average (individual) outcomes and censoring rate found by Yang, Qu and Lee (2016):

E[yi|Xc] = E[I(yi > 0)|Xc]F−1
ε (E[I(yi > 0)|Xc];σ)−

∫
c<F−1

ε (E[I(yi>0)|Xc];σ)
cfε(c)dc. (3.14)

Because (3.14) holds for any individual under every equilibrium, it can be used to identify

σ regardless equilibrium multiplicity. To utilize this relationship, we impose the assumption

below:

Assumption 3.7 fε(·;σ) is differentiable with respect to σ, limc→∞ c(dFε(c;σ)/dσ) = 0, and

∂Fε(c;σ)/∂c
fε(c;σ) is strictly monotonic with respect to c.

Lemma 3.3 Under Assumptions 3.2, 3.4, and 3.5, there is a subset X c1 ⊆ <nL such that

P (X ∈ X c0 ) > 0 and lim|Xc
j,1|→∞,1≤j≤n,Xc∈X c1 P (yj = 1, 1 ≤ j ≤ n|Xc) = 1.
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Proof. See Appendix D.

Proposition 3.5 In the Tobit model, for a group with social relations Wn, denote

X̃i = (1,
∑

j 6=iWn,ij , X
c′
i ,
∑

j 6=iWn,ijX
c′
j )
′

and X̂i = (1, Xc′
i ,
∑

j 6=iWn,ijX
c′
j )
′
.

Under Assumptions 3.2, 3.4, and 3.5, β0,0 and λ can be identified, if there is D0 > 0 with

inf
D≥D0

min
1≤i≤n

min eigE[X̃iX̃
′
i |X c1 , |Xc

j,1| ≥ D, 1 ≤ j ≤ n] > 0; (3.15)

or

inf
D≥D0

min
1≤i≤n

min eigE[X̂iX̂
′
i |X c1 , |Xc

j,1| ≥ D, 1 ≤ j ≤ n] > 0; (3.15′)

when Wn is row-normalized. If, in addition, Assumption 3.7 is satisfied, σ is identified.

Proof. See Appendix D.

After parameters for the payoff function u(·) are identified, we identify α given (β, σ, λ).

Suppose that for (β, σ, λ), for group (X,Wn), there are D equilibria. Denote their values under

the criterion γ(·;X,Wn) by γ(ξd;X,Wn) ∈ <q. Stacking them together, we get an n×q matrix:

Γ(Xc,Wn;β, σ, λ) = (γ
′
(ξ1;X,Wn, · · · , γ

′
(ξD;X,Wn))

′
.

Proposition 3.6 In the binary choice (Tobit) model, with social relations, Wn, under the

assumptions in Proposition 3.4(Proposition 3.5), α can be identified if

E[Γ
′
(Xc,Wn;β, σ, λ)Γ(Xc,Wn;β, σ, λ)|Xc] has full column rank for any Xc.

Proof. See Appendix D.

When there are different groups, β0,1 can be identified from variations across groups.

3.4 Computation and Estimation

With a parametric selection probability distribution, it is natural to derive parameter estimates

by maximizing the complete likelihood function, (3.10). However, that requires computation

of all the equilibria, which is a challenging issue both theoretically and numerically. According

to Garcia and Zangwill(1981), that ambitious goal is achievable for a class of problems by the

homotopy continuation method (simply, the homotopy method). To be specific, in complex

spaces, S : Cn → Cn, is analytic. Define a homotopy: {c̃ : S(c̃) = 0}. we construct the following

homotopy:

Ri(c̃, t) = (1− t)(c̃qii − 1) + tSi(c̃), (3.16)
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for i = 1, · · · , n and 0 ≤ t ≤ 1. qi is a positive integer. For t = 0, Ri(c̃) = c̃qii − 1, which

is a polynomial with qi solutions. For t = 1, Ri(c̃) = Si(c̃). Separate the real and imaginary

parts of variables and functions. That is, c̃ = (c̃R, c̃I) and R
∗
i (c̃, t) = (R

R
i (c̃, t), R

I
i (c̃, t)). The

function R
∗

then has 2n coordinates. Re-parametrize the system by ω, such that c̃ = c̃(ω) and

t = t(ω).7 Then we get R
R
i (c̃, t) = 0 and R

I
i (c̃, t) = 0 for all i = 1, · · · , n. Denote this system

as R
∗

= (R
R
1 , R

I
1, · · · , R

R
n , R

I
n). Taking derivatives, we get that

DR
∗
(y)Dy =

∂R
∗

∂c̃
Dc̃(ω) +

∂R

∂t
Dt(ω) = DR

∗
(̃(c), t)

(
Dc̃
′
Dt(ω)

)′
= 0, (3.17)

where y = (c̃
′
, t)
′
. It is shown by Garcia and Zangwill(1981) that the above system can be

solved through “basic differential equations” (BDE):

y
′
i(ω) = (−1)idetDR

∗
−i(y), (3.18)

for i = 1, · · · , 2n+1, staring at (c̃0, t0)’s with R
∗
(c̃0, t0) = 0. DR

∗
−i(y) is the Jacobian of DR

∗
(y)

with the i-th column removed. The above calculation is possible if DR
∗
(c̃, t) is of full row rank

for all (c̃, t) with R(c̃, t) = 0, which is called the “regularity” condition. If in addition, the

homotopy is also “path finite”(that it, for any t, any c̃ satisfying R
∗
(c̃, t) never goes to infinity),

solving the BDEs can guarantee getting all solutions to S(c̃) = 0. Similar to the previous

discussions about regular groups, the regularity condition is satisfied in general.8 A sufficient

condition for path-finiteness is that the following limit

lim
‖c̃i‖→∞

S(c̃)i
c̃qi − 1

(3.19)

is not a pure real negative number, for all i. Especially, the path-finite condition is satisfied

when the above limit is equal to zero.

To apply this theory, we need first to extend S(ξ;X,Wn) from the real line to complex

spaces and make sure its extension is analytic. This extension, actually, is important, in order

to ensure that all solutions to S(ξ;X,Wn) = 0 can be solved in this way. That is because for

analytic functions in complex spaces, we can make sure det(∂R
∗
(c̃, t)/∂c̃) ≥ 0.9 It then follows

from (3.18) that t(ω) is monotonic. That is, on any path, t is monotonic and never turns back.

As a result, stemming backwardly from any points in
{
c̃ : R

∗
(c̃, 1) = S(c̃) = 0

}
, a path goes

7This re-parametrization is important. With multiple equilibria, any fixed t may corresponds to different c̃’s.
8This result, as well as that for regular groups in equilibrium analysis, are a direct result of the Sard’s theorem.

See the textbook written by Guillemin and Pollack(1974) for details.
9This result follows from the Cauchy-Riemann equations.
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down directly to a zero for R
∗
(c̃, 0) and never goes up. That ensures that every zero of S(c̃)

can be connected through a path to one of the zeros of the homotopic function, R
∗
(c̃, 0). If we

restrict to the real line, however, det(∂R
∗
(c̃, t)/∂c̃) can be either positive or negative or zero.

In that case, paths can reverse back and some zeros of S(c̃) may not be reached. One example

can be found in Garcia and Zangwill (1981).

This extension is crucial, nonetheless, not straightforward for some economic applications.

Bajari et al.(2010c) show that when the power of the polynomials, qi’s, are sufficiently large, the

homotopy method can be used to derive all solutions for the multinomial choice model. For the

framework in this paper, instead, it is relatively easy to extend S(ξ;X,Wn) for many classes of

models. Inspecting the models we listed in the paper, most of the Hi(·)’s are defined by integrals.

Noticing that G(ã) =
∫ a
a0
g(c̃)dc̃ is analytic, when g(·) is analytic in a simply-connected region,

we can derive analytic extensions for the models listed in this paper. For example, when the

idiosyncratic shocks are normally distributed, its density, fε(·), is analytic. For its CDF, we can

manipulate as Fε(a) =
∫
c<a fε(c)dc =

∫ a
a0
fε(c)dc + Fε(a0), for some real number a0 > 0. The

extension that F̂ε(ã) =
∫ ã
a0
fε(c̃)dc̃+Fε(a0) is analytic.10 Since sums, products, and composites

of analytic functions are analytic, we can derive analytic extensions for other models in a similar

way. For the model of investment decisions under Cobb-Douglas technology, there is a power

function, which can be multivalued in the complex plane. We choose one sheet in that case.

It is not hard to check the sufficient condition for “path-finiteness” in the specific model

structure of this paper. As the diagonal entries of the social relation matrix, Wn, are all zeros,

for any i, Si(c̃) does not depend on c̃i. Hence, the limit in (3.19) will be zero when qi = 2.

Solving the “basic differential equations” requires computing the Jacobinas, which can in-

crease computation burden. As a result, Garcia and Zangwill(?) propose to combine the

homotopy continuation method with Newton’s method, which can facilicate computation.

In practice, there is a computation algorithm, the homotopy algorithm, with a Fortran code

suite, HOMPACK90, provided by Watson et al. (1987) and (1997). That algorithm, is related

but not the same as the homotopy continuation method we discussed above. Due to Watson

et al. (1987), the homotopy algorithm is a global convergent algorithm and is based on the

theory that almost all starting points can lead the a zero of a function, or equivalently, a fixed

10The whole space, C2 is simply-connected. The integral here then does not depend on the path.
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point of a function. Therefore, there is not guarantee that it can lead to all solutions to an

equation. However, it is also noted by Borkovsly et al. (2010a) and (2010b), with discretization

in computation, the homotopy algorithm can alleviate the problem that the function we are

using is non-analytic. In practice, we may compare the performance of both methods.

With G independent groups, the log likelihood of the whole sample can be written as:

logL(Y1, · · · , YG|β, λ, σ, α)

=

G∑
g=1

log(
∑

ξe∈E(Xg ,Wg)

exp(α
′
γ(ξe;Xg,Wg))∑

ξ̃e∈E(Xg ,Wg)
exp(α′γ(ξ̃e;Xg,Wg))

ng∏
i=1

f(yi,g|ξe))
(3.20)

The form of the sample likelihood function follows from two types of independence. First, those

groups are independent of each other. Second, because the privately known idiosyncratic shocks

are independent, within any group, given an equilibrium, the outcome of a group member is

independent of those of other group members. With a large number of independent groups, we

can apply conventional large sample theory about maximum likelihood estimation. In practice,

as it is computationally intensive to compute all the equilibria, instead of maximizing the

sample log likelihood, for any given parameter vector, we can compute the set of equilibrium

and simulate the selection result and outcome distribution. Then we can calculate simulated

moments and estimate parameters through maximizing the simulated moment conditions.

4 Estimation with Self-Known Characteristics

When some exogenous characteristics, Xp
i ’s, are not public information, conditional expecta-

tions, ξei,m(·) vary with the private information used to make predictions. This paper focuses

on the special case that Xp
i is known only to i (and the econometricians). That is, for any

i, Ji(i) = 1 and Ji(j) = 0 for all j 6= i. Equilibrium and estimation method for the general

information structure can be analyzed in a similar way, notations and calculations will be more

complicated though. We make an additional simplifying assumption, as Yang and Lee (2017)

do.

Assumption 4.1 The conditional distribution of Xp = (Xp′

1 , · · · , X
p′
n )
′

is exchangeable, if Xp
i ’s

have the same support Xp ∈ <kp, for any public information Z = z and for any permutation,

21



$ : {1, · · · , n} → {1, · · · , n}, the conditional distribution of Xp given Z = z, fp(·), satisfies

fp(X
p
1 = xp1, · · · , X

p
n = xpn) = fp(X

p
$(1) = xp1, · · · , X

p
$(n) = xpn),

for any xp = (xp
′

1 , · · · , x
p′
n )
′

in their support.

Under Assumption 4.1, fixing public information, Z = z, the conditional distribution, fp(X
p
i |X

p
j , Z =

z) is invariant with i, j as long as i 6= j. So we just denote it by fp(x̃|x). For any i, and k, k
′ 6= i,

for any x in the support Xp,

ξei (X
p
k = x) =E[Hi(u(Xi) + λ

∑
j 6=i

Wn,ijξ
e
j (X

p
i ))|Xp

k = x, Z = z]

=E[Hi(u(Xi) + λ
∑
j 6=i

Wn,ijξ
e
j (X

p
i ))|Xp

k′
= x, Z = z]

=ξei (X
p

k′
= x).

That is to say, the conditional expectation ξei (·) depends only on the realization of self-known

information. Any two agents other than i will make the same prediction on i’s behavior when-

ever their own self-known features are the same. According to Appendix B, the conditional

expectation about i’s behaviors, ξei : Xp → <, is a mapping from the support of self-known

covariates to the space of possible outcomes. For conditional expectations about behaviors of

all group members, the vector-valued function ξe = (ξe1, · · · , ξen), satisfies:

ξe(xp1, · · · , x
p
n)i = ξei (x

p
i ), (4.1)

and

ξei (x) =

∫
x̃
Hi(u(Xg, Xc

i , x̃) + λ
∑
j 6=i

Wn,ijξ
e
j (x̃))fp(x̃|x)dx̃, (4.2)

for all i = 1, · · · , n and x ∈ Xp.

Particularly, if Xp
i is independent of Xp

j for any i 6= j, fp(x̃|x) = fp(x̃). That is, information

about Xp
j does not help to predict i’s actions, given public information Z = z. In this case, the

conditional expectation function ξe reduces to an n× 1 vector with

ξei =

∫
x̃
Hi(u(Xg, Xc

i , x̃) + λ
∑
j 6=i

Wn,ijξ
e
j )fp(x̃)dx̃, (4.3)

which is a system of nonlinear equations and can be analyzed in a way similar to that used

when all exogenous characteristics are public information.
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Hence, in the subsequent sub-sections, discussions are focused on the case that Xp
i and Xp

j

are correlated for i 6= j. Since the domain of each ξei is the support of Xp
j ’s, whether Xp

j ’s

are discrete or continuous random vectors will have different implications on the conditional

expectation functions. We discuss equilibrium, estimation and identification with self-known

characteristics separately for those two cases.

4.1 Discrete Private Characteristics

Suppose that Xp
i ’s are discretely distributed and have a finite number of mass points. Sup-

pose that their common support is Xp =
{
x1, · · · , xK

}
for some K < ∞. The transitional

probabilities are Pk,k′ = Pr(Xp
i = xk

′
|Xp

j = xk, Z = z). Then ξe can be represented by a

vector,

ξe = (ξe1,1, · · · , ξe1,K , · · · , ξen,1, · · · , ξen,K)
′
, (4.4)

where ξei,k = ξei (x
k). The consistency condition (4.2) reduces to

ξei,k =

K∑
k′

Pk,k′Hi(u(Xg, Xc
i , x

k
′
) + λ

∑
j 6=i

Wn,ijξ
e
j,k′

), (4.5)

for i = 1, · · · , n and k = 1, · · · ,K. This is a finite dimension nonlinear system of equations,

similar to the equilibrium condition without private information. Thus, the techniques in the

previous section can be used to analyze equilibria and complete the model. Identification

of model parameters can be proved analogously. Although the support of privately known

characteristics, Xp
i ’s, is bounded, if the commonly known individual features, Xc

i ’s, have a full

support, the method of “identification at infinity” can still be used.

4.2 Continuous Private Characteristics

4.2.1 Equilibrium Set

If Xp
i ’s are continuous random variables, ξe is a function defined on a continuum set of points

satisfying the functional equations (4.1) and (4.2). According to Appendix B, we can view ξe

as a point in a Banach space, (Ξ(Wn,J ), ‖ · ‖). Define an operator, T : (Ξ(Wn,J ), ‖ · ‖) →

(Ξ(Wn,J ), ‖ · ‖) as

T (ξ)(xp1, · · · , x
p
n)i =

∫
x̃
Hi(u(Xg, Xc

i , x̃) + λ
∑
j 6=i

Wn,ijξ
e
j (x̃))fp(x̃|xpi )dx̃, (4.6)
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for all i and (xp1, · · · , x
p
n) ∈ Xnp . Then an equilibrium corresponds to a fixed point of this

operator. We can prove the existence of an equilibrium by the Schauder fixed point theorem.11

To apply this theorem, we impose the following two assumptions.

Assumption 4.2 For all i = 1, · · · , n, Hi(·) is differentiable. Additionally,

max
1≤i≤n

sup
c∈<
|dHi(c)

dc
|‖Wn‖∞ <∞. (4.7)

Assumption 4.3 There is 0 ≤ b < 1 such that max‖ξ‖→∞ ‖T (ξ)‖/‖ξ‖ = b.

It is proved in Lemma E.4 that under Assumption 4.2, T is continuous.(Actually, T is a

Lipschitz function when this condition holds.) In addition, it is shown by Lemma E.5 that with

Assumption 4.3, there is r0 > 0, such that for all ξ in the closed ball, B[0, r0] = {ξ : ‖ξ‖ ≤ r0},

‖T (ξ)‖ ≤ r0. That is to say, the images of all points in B[0, r0] is still in this ball. Moreover, if

there is any equilibrium, it must be contained in B[0, r0]. The ball, B[0, r0], is nonempty, closed,

and convex. To apply the Schauder fixed point theorem, it suffices to show that T (B[0, r0]) is

contained in a compact subset of B[0, r0]. However, that is not trivial, because the ball B[0, r0]

is not compact in the function space, (Ξ(Wn,J ), ‖ · ‖). To capture a compact set in this space,

we begin with the relatively compact sets, for the closure of a relatively compact set is compact.

As we have mentioned, ξ ∈ (Ξ(Wn,J ), ‖ · ‖) if any only if each of its coordinate functions, ξi,

belongs to the Lebesgue space, L1(Xp,BX , µp;<1). Utilizing the characterization of relatively

compact subsets in Lebesgue spaces by Dunford and Schwartz(1958), we derive necessary and

sufficient conditions for relative compactness in (Ξ(Wn,J ), ‖ · ‖). (See Proposition E.3 for the

results of a general form of private information about Xp
i ’s.) On the basis of these discussions,

a theorem about the set of equilibria is derived.

Proposition 4.1 Under Assumptions 4.2 and 4.3, if in addition,

max
1≤i≤n

∫
Xp
|T (ξ)i(x+ x̃)fp(x+ x̃)− T (ξ)i(x)fp(x)|dx→ 0, (4.8)

as x̃→ 0, uniformly for any ξ ∈ B[0, r0]; and

max
1≤i≤n

∫
Xp−Cr

|T (ξ)i(x)|fp(x)dx→ 0, (4.9)

11The theorem is cited as Proposition E.4 in Appendix E. See Bonsall (1962) for details. A brief introduction
can be found at http://en.wikipedia.org/wiki/Schauder fixed point theorem.
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as r → ∞, uniformly for all ξ ∈ B[0, r0], the set of equilibria, E(X,Wn), is a nonempty and

compact subset of (Ξ(Wn,J ), ‖ · ‖) and is contiained in the closed ball B[0, r0]. In particular,

(4.8) and (4.9) are satisfied, if

1. Hi(·)’s are uniformly bounded, i.e., max1≤i≤n supa∈<1 |Hi(a)| ≤ B
′

for some B
′
;

2. E[Xp
i |Z = z] <∞, for all i; and

3. For some δ0 > 0, for each i, there is an function gi(x, x̂) such that∫
Xpi,m

∫
XpJi
|gi(x, x̂)|dxdx̂ < ∞, fp,i(x + x̃, x̂) ≤ gi(x, x̂), a.e., for any x̃ in the cube Cδ0,

where fp,i(·, ·) is the joint density of Xp
i and Xp

j , i 6= j, conditional on public information

Z = z.12

This existence theorem requires some conditions about the behaviors, Hi(·)’s, and the joint

distribution of Xp
i ’s conditional on public information Z = z. Conditions (4.8) and (4.9) are

about uniform convergence, which may be hard to verify. However, when Hi(·)’s are uniformly

bounded, we just need to verify some distribution conditions. This type of scenarios include

models with bounded behaviors, such as the models for binary choices, ordered multinomial

choices and two-sided censored choices. In that case, we can see that if conditional on public

information Z = z, Xp
i ’s have a continuous joint distribution on a bounded support, the suf-

ficient conditions about distribution are satisfied. When the support is unbounded, for some

distributions, the joint density of Xp
i ’s can still be dominated by a integrable function. One

example is the normal distribution. See Lemma E.6 in Appendix E. Therefore, when outcomes

and/or behaviors are uniformly bounded and the joint distribution of Xp
i and Xp

j (i 6= j) is

normal conditional on public information Z = z, there is at least one equilibrium and the set

of equilibria is a compact set contained in a closed ball B[0, r0].

The compactness of E(X,Wn) is important. Given this result, for any small positive number,

η > 0, there is a finite number of points in E(X,Wn),
{
ξe,1, · · · , ξe,K

}
, such that for any

equilibrium ξe, we can pick one of those points, say ξe,k, with ‖ξe − ξe,k‖ < η.13 This way, the

finite set
{
ξe,1, · · · , ξe,K

}
can be viewed as an approximation of all equilibria with precision η.

12A cube, Cr, is the set in <kp such that for any x̃ ∈ Cr, all its coordinates are within [−r, r].
13See Dunford and Schwartz (1958) and Folland(1999) for a brief introduction on compactness and relative

compactness.
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This is the basis on which we specify the distribution of equilibrium selection in the current

structure of incomplete information.

Conditions (4.8) and (4.9) are used to ensure that we can apply the Schauder fixed point

theorem to the whole ball B[0, r0]. If we restrict to equilibria with some special properties so

that they are contained in a compact subset of B[0, r0], we may apply the Schauder fixed point

theorem in this compact subset. Then (4.8) and (4.9) will be satisfied, some other possible

equilibria will be excluded though. For the model of investment decisions with Cobb-Douglas

production function, Assumption 4.3 is satisfied. To see this, via the Jensen’s inequality and

the Hölder’s inequality,

∫
Xp
|T (ξ)i(x)|fp(x)dx

‖ξ‖

=AL1−ι
i

∫
Xp

∫ ∫ (
max

{
u(Xg, Xc

i , y) + λ
∑
j 6=iWn,ijξj(y)− εi, 0

})ι
fε(εi)dεifp(y|x)dyfp(x)dx|

‖ξ‖

≤AL1−ι
i

∫
Xp

∫
[HT (u(Xg, Xc

i , y) + λ
∑
j 6=iWn,ijξj(y))]ιfp(y|x)dyfp(x)dx

‖ξ‖

≤AL1−ι
i

[
∫
HT (u(Xg, Xc

i , y) + λ
∑
j 6=iWn,ijξj(y))fp(x, y)dxdy]ι

‖ξ‖

=AL1−ι
i

‖ξ‖ι

‖ξ‖

[ ∫ HT (u(Xg, Xc
i , y) + λ

∑
j 6=iWn,ijξj(y))

|u(Xg, Xc
i , y) + λ

∑
j 6=iWn,ijξj(y)|

·
|u(Xg, Xc

i , y) + λ
∑
j 6=iWn,ijξj(y)|

‖ξ‖ fp(x, y)dxdy
]ι

≤AL1−ι
i

‖ξ‖ι

‖ξ‖

[ ∫ (HT (u(Xg, Xc
i , y) + λ

∑
j 6=iWn,ijξj(y))

|u(Xg, Xc
i , y) + λ

∑
j 6=iWn,ijξj(y)|

)p
fp(x, y)dxdy

] ι
p

·
[ ∫ ( |u(Xg, Xc

i , y) + λ
∑
j 6=iWn,ijξj(y)|

‖ξ‖
)q
fp(x, y)dxdy

] ι
q
,

(4.10)

for some p, q ≥ 1 with 1/p + 1/q = 1. Similar to our discussion in the previous section, if

|λ|‖Wn‖∞ <∞,
∫
Xp |T (ξ)i(x)|fp(x)dx

‖ξ‖ goes to zero as ‖ξ‖ goes to infinity. Then lim‖ξ‖E→∞
‖T (ξ)‖
‖ξ‖ =

0. However, other conditions may not hold in this case. Instead, if we focus on the case that

Xp
i ’s have a compact support and all equilibrium conditional expectations, ξe’s, are continuous,

we may derive a similar characterization of the set of equilibria.14

Nonetheless, for some models with unbounded choices, such as the linear model of continuous

choices and the Tobit model, in order to satisfy Assumption 4.3, we might have to impose strong

conditions on λ and ‖Wn‖∞. To avoid that, we employ other techniques to analyze those models.

14In that case, we may use the sup-norm for each coordinate function, the ξi’s, instead of the ‖ · ‖1 norm.
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First consider the linear model with continuous choices. In this case, the equilibrium condition

for conditional expectations is:

ξei (x) =

∫
x̃
u(Xg, Xc

i , x̃)fp(x̃|x)dx̃+

∫
x̃
λ
∑
j 6=i

Wn,ijξ
e
j (x̃))fp(x̃|x)dx̃. (4.11)

Reorganizing the above equation, we get that

ξei (x) +

∫
x̃
(−λ)

∑
j 6=i

Wn,ijξ
e
j (x̃))fp(x̃|x)dx̃ =

∫
x̃
u(Xg, Xc

i , x̃)fp(x̃|x)dx̃. (4.12)

This is an n-dimension Fredholm integration alternative, whose solutions are investigated by

general Fredholm theory.15 Especially, when u(Xg, Xc
i , X

p
i ) = v(Xg, Xc

i )+X
p′

i β and E[Xp
j |X

p
i ] =

µ+CXp
i , by Yang and Lee (2017), when Inkp − λ(Wn ⊗C

′
) and In − λWn are both invertible,

there is one and only one linear equilibrium conditional expectation, ξe.

For the Tobit model with heterogeneous cutoffs, define

pi(x) = Fε(u(Xg, Xc
i , x) + λ

∑
j 6=iWn,ijξ

e
j (x)− v(Xg, Xc

i )),

for all i and x ∈ Xp. Then we have that ξi(x) =
∫
Hi(F

−1
ε (pi(x̃)) + v(Xg, Xc

i ))fε(x̃|x)dx̃. The

equilibrium condition can be rewritten as

pi(x) = Fε(u(Xg, Xc
i , x) + λ

∑
j 6=i

Wn,ij

∫
Hj(F

−1
ε (pj(ỹ)) + v(Xg, Xc

i ))fε(ỹ|x)dỹ − v(Xg, Xc
i )).

As Fε(·) is bounded, we can apply Proposition 4.1 to analyze equilibrium set. If v(Xg, Xc
i ) = 0

for all i, that is the case of the Tobit model with homogeneous cutoffs normalized to 0.

4.2.2 Equilibrium Set Approximation

Although we can approximate the whole equilibrium set by a finite number of equilibria for any

level of precision, as functions defined on a continuum, it is not possible to derive the exact

values of those functions at every point in their domains. In order to apply the stochastic

selection rule, we approximate such a function. Four possible approximation approached are

discussed here.

The first method uses the simple functions. In Appendix E, we show that ξ = (ξ1, · · · , ξn) ∈

(Ξ(Wn,J ), ‖ · ‖) if and only if each of its coordinate function, ξi, is an element of the Lebesgue

15See Ruston (1986) for systematic discussions. Lax(2002) provides with a succinct discussions. Define an
operator, TF such that for any ξ, TF (ξ)(x1, · · · , xn)l = TF (ξ)l(xl) =

∫
x̃
(−λ)

∑
j 6=iWn,ijξ

e
j (x̃)fp(x̃|xl)dx̃,

for all l and xl ∈ Xp. If Xp is compact in <kp , TF is a compact operator from (Ξ(Wn,J ), ‖ · ‖) to a space of
continuous functions on Xp. Then this integration has a solution if
ũ(x1, · · · , xn) = (

∫
x̃
u(Xg, Xc

i , x̃)fp(x̃|x1)dx̃, · · · ,
∫
x̃
u(Xg, Xc

i , x̃)fp(x̃|xn)dx̃)
′

is orthogonal to the null space of

the transpose operator, T
′
F .
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space, L1(Xp,Bp, µp;<1). In such a function space, there is a special set of functions called the

“simple functions”. A function ξ from Xp to <1 is µp simple if ξ has only a finite set of values,

{ν1, · · · , νK}; and for any νk, ξ
−1(νk) is an element of the σ-algebra, Bp. By Dunford and

Schwartz (1958), the set of µp-measurable simple functions is dense in L1(Xp,Bp, µp;<1). That

is, for any given level of precision, we can always find a simple function to approximate a function

in L1(Xp,Bp, µp;<1). For any integer K, choose a finite partition of Xp, UK,1, · · · , UK,K , where

each UK,k is in Bp. For any i = 1, · · · , n, define a simple function as ξKi (x̃) =
∑K

k=1 κi,K,kI(x̃ ∈

UK,k). Then the equilibrium condition (4.2) can be approximated as

K∑
k=1

κi,K,kI(x̃ ∈ UK,k) ≈
∫
Hi(u(Xg, Xc

i , ỹ) + λ
∑
j 6=i

Wn,ij

K∑
k=1

κj,K,kI(ỹ ∈ UK,k))fp(ỹ|x̃ ∈ UK,k)dỹ, (4.13)

for all i = 1, · · · , n and k = 1, · · · ,K. Therefore,

κi,K,k =

∫
Hi(u(Xg, Xc

i , ỹ) + λ
∑
j 6=i

Wn,ij

K∑
k=1

κj,K,kI(ỹ ∈ UK,k))fp(ỹ|x̃ ∈ UK,k)dỹ

=

K∑
k=1

P (UK,k
′

|UK,k)E[Hi(u(Xg, Xc
i , ỹ) + λ

∑
j 6=i

Wn,ijκj,K,k′ )|x̃ ∈ U
K,k, ỹ ∈ UK,k

′

],

(4.14)

where P (UK,k
′
|UK,k) = P (Xp

j ∈ UK,k
′
|Xp

i ∈ UK,k). As i runs over 1, · · · , n and k runs over

1, · · · ,K, there are nK equations for nK unknowns. This is similar to the previous analysis for

the case of discretely distributed Xp
i ’s. What is different is that the conditional distribution,

fp(ỹ|xpK,k), is not discrete. When all Hi(·)’s and fp(·) can be extended to the complex space in

an analytic way, as the right-hand-side of (4.14) is a weighted sum of integrations over Hi(·),

the above system can be extended to complex spaces. Multiple solutions for κj,K,k’s can then

be computed by the homotopy method. The corresponding simple functions are then used as

an approximation of the equilibrium set.

To approximate equilibrium conditional expectation functions by simple functions is, in

essence, to discretize the domain, Xp. Rust(1987) uses this method to solve for the optimal

engine replacement scheme in an optimization programming problem. Compared with his work,

instead of a unique optimal scheme in Rust(1987), it is possible to get multiple solutions to

(4.14), which makes the model in this paper more computationally intensive. Precision depends

on the choice of partitions. Generally speaking, the finer the partition (increasing K), the
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more precise the approximation. However, it remains a problem how to choose the cutoffs for

a partition.

Inspecting (4.2), the value of an equilibrium conditional expectation is determined by an in-

tegration, which can be approximated by the quadrature method(See Judd (1998) and Lee(2001)

for details.). Employing this approximation of integration, we get the second method to ap-

proximate equilibria. Take the Gauss-Legendre quadrature as an example. Consider the simple

case that the dimension for Xp
i ’s is kp = 1 and Xp is an interval, [a, b]. We have that

ξei (x) =

∫ b

a

Hi(u(xg, xci , x̃) + λ
∑
j 6=i

Wn,ijξ
e
j (x̃))fp(x̃|x)dx̃

≈
K∑
k=1

ωkHi(u(xg, xci ,
(υk + 1)(b− a)

2
+ a) + λ

∑
j 6=i

Wn,ijξ
e
j (

(υk + 1)(b− a)

2
+ a))

· fp(
(υk + 1)(b− a)

2
+ a|x)

b− a
2

,

(4.15)

where υk, for k = 1, · · · ,K, are abscissae and ωk are the weights. They are fixed. If we

can get the values of expectation function on a finite number of points, xpk = (υk+1)(b−a)
2 + a,

for k = 1, · · · ,K, we can approximate the value of expectation function at any point in the

support of Xp
i . To be specific, when we take x = xpk for k = 1, · · · ,K, we will get nK

equations for nK unknowns,
{
ξei (x

p
k)
}
i,k

’s. Using the homotopy method, we get a finite number

of solutions,
{
ξe,di (xpk)

}
i,k

, for some d = 1, · · · , D. For each d, plugging
{
ξe,di (xpk)

}
i,k

back into

(4.15), we derive an approximation of an equilibrium conditional expectation function. If Xp
i

has a full support, we need to change variables so that integral is over a bounded interval.

This quadrature method is used by Yang and Lee (2017) and Yang, Qu and Lee (2016) to

derive approximations to equilibrium conditional expectation functions when there are private

information in exogenous characteristics. The difference lies in the way to solve the system of

equations (4.15). They search for the unique solution under condition (2.12). Instead, in this

paper, the homotopy method is used to derive all the solutions,
{
ξe,di (xpk)

}
i,k

.

When Xp
i ’s are of multiple dimensions, the tensor product may be used. Details are intro-

duced by Judd (1998). However, when the dimension of Xp
i ’s are high, computation can be

intensive. Therefore, for high-dimension privately known characteristics, the stochastic inte-

gration may be used for approximation instead. To be specific, let g(·) be a density with its

support containing the support of Xp
i such that fp(x

p|x)/g(xp) is well defined. Then we can
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generate K random draws, say, xpk, from density h(·). The stochastic approximation will be

ξei (x) ≈ 1

K

K∑
k=1

Hi(u(xg, xci , x
p
k) + λ

∑
j 6=i

Wn,ijξ
e
j (x

p
k))

fp(x
p
k|x)

g(xpk)
. (4.16)

The fourth method is a combination of the quadrature method and basis function approx-

imation. That is, an equilibrium function is approximated by a linear combination of a finite

number of bases. In our model, ξ = (ξ1, · · · , ξn) is an element of (Ξ(Wn,J ), ‖ · ‖) if and only if

each of its coordinate function, ξi is an element of the Lebesgue space, L1(Xp,Bp, µp;<1). We

can use basis of this Banach space to approximate an equilibrium. For example, the dimension

of Xp
i ’s is kp = 1 and Xp = [a, b]. We first transform ξ into a function on [0, 1] by changing

variables.

1. When −∞ < a < b < +∞, by setting x = a+ (b− a)x̃,∫ b
a ξi(x)fp(x)dx =

∫ 1
0 bξ(a+ (b− a)x̃)fp(a+ (b− a)x̃)dt̃.

Define ξ̃i(x̃) = bξ(a+ (b− a)x̃)fp(a+ (b− a)x̃).

2. When a = −∞ and b < +∞, by setting x = log(bx̃),∫ b
a ξi(x)fp(x)dx =

∫ 1
0 ξ(log(bx̃))fp(log(bx̃)) 1

x̃dx̃.

Define ξ̃i(x̃) = ξ(log(bx̃))fp(log(bx̃)) 1
x̃ .

3. When a > −∞ and b = +∞, by setting x = log(a/(1− x̃)),∫ b
a ξi(x)fp(x)dx =

∫ 1
0 ξ(log(a/(1− x̃))fp(log(a/(1− x̃))) 1

1−x̃dx̃.

Define ξ̃i(x̃) = ξ(log(a/(1− x̃))fp(log(a/(1− x̃))) 1
1−x̃ .

4. When a = −∞ and b = +∞, by setting t = log(x̃/(1− x̃)),∫ b
a ξi(x)fp(x)dx =

∫ 1
0 ξ(log(x̃/(1− x̃)))fp(log(x̃/(1− x̃))) 1

x̃(1−x̃)dx̃.

Define ξ̃i(x̃) = ξ(log(x̃/(1− x̃)))fp(log(x̃/(1− x̃))) 1
x̃(1−x̃) .

We can see that ξi is an element of L1(Xp,Bp, µp;<1) if and only if ξ̃i is in L1([0, 1],B[0,1],m;<1),

the space of Lebesgue integrable functions defined on the unit interval [0, 1]. Let

τ0(x̃) = 0, (4.17)

for all x̃ ∈ [0, 1]; and

τk,j = 2k−1(I((2j − 2)2−k ≤ x̃ < (2j − 1)2−k)− I((2j − 1)2−k ≤ x̃ < 2j · 2−k)), (4.18)
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for k and 1 ≤ j < 2k−1 and x̃ ∈ [0, 1]. Sort them in the order, τ0, τ1,1, τ2,1, τ2,2, · · · , and re-label

those functions as τ̃0, τ̃1, τ̃2, · · · . Then {τ̃k} is called the Haar bases for L1([0, 1],B[0,1],m;<1).16

See Figure 1 for a graphic illustration. Choose an integer L, we approximate ξ̃i by a linear

combination of a finite number of those basis functions, i.e., ξ̃i ≈
∑L

l=0 κi,L,lτ̃l. From it, we get

an approximation of ξ. Take the first case listed above as an example, ξi(x) ≈
∑L

l=0

(
κi,L,lτ̃l((x−

a)/(b − a))
)
/
(
bfp(x)

)
. Plugging this approximation back into the consistency condition, we

get that

∑L
l=0 κi,L,lτ̃l((x− a)/(b− a))

bfp(x)

=

∫ b

a

Hi
(
u(Xg, Xc

i , ỹ) + λ
∑
j 6=i

Wn,ij

L∑
l
′
=1

κj,L,l′ τ̃l((ỹ − a)/(b− a))

bfp(ỹ)

)
fp(ỹ|x̃)dỹ,

(4.19)

As for the integration, we can choose the quadrature points as we did before, i.e.,

L∑
l=0

κi,L,l
τ̃l((x− a)/(b− a))

bfp(x)

=

K∑
k=1

ωkHi
(
u(Xg, Xc

i ,
(υk + 1)(b− a)

2
+ a) + λ

∑
j 6=i

Wn,ij

L∑
l
′
=1

κj,L,l′
τ̃l((υk + 1)/2)

bfp(
(υk+1)(b−a)

2
+ a)

)
· fp(

(υk + 1)(b− a)

2
+ a|x̃)dỹ

b− a
2

,

(4.20)

for i = 1, · · · , n, l = 1, · · · , L, and k = 1, · · · ,K. The Gauss-Legendre quadrature abscrissae,

υk, and weights, ωk, are fixed. The Haar bases, τ̃l’s, are known functions. From the data, it is

possible to get the distribution density of Xp
i ’s conditional on public information. Consequently,

once we plug in x = (υk+1)(b−a)
2 , the value of τ̃l((x−a)/(b−a))

bfp(x) can be calculated. In this way,

we derive a system of nK nonlinear equations for nL coefficients, κi,L,l’s. Choosing K = L

and applying the homotopy method when analytic extension is possible, we may get multiple

solutions, κdi,L,l, for d = 1, · · · , D. They correspond to multiple equilibria. Approximations

when [a, b] is unbounded can be computed in a similar way by changing variables.

Comparing the above approaches, we can see that using the first method, simple function

approximation, we first fix the class of functions which are used to make approximation and

then pin down the unknown coefficients of equilibrium functions by the equilibrium condition.

However, there is not a general guidance on the choice of partitioning cutoffs. For the second

and third method, we do not fix the form of equilibrium expectation functions. Instead, we

16Since ‖τ̃k‖1 = 1, the Haar basis is a basis with unit norm.
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first solve the values of an equilibrium expectation function at a fixed finite set of points and

then use those values to approximate the equilibrium expectation function at any point in its

domain. These two methods also specify how those points are chosen. Using the last method,

we construct a flexible form of functions using basis functions and then employ the quadrature

method to approximate integration. Using the second method, approximation precision depends

on the number of quadrature abscissae. For the fourth method, instead, the approximation

performance hinges on the number of function basis chosen.

4.2.3 Equilibrium Selection and Parameter Identification

Given a precision η > 0, consider a finite approximation to the set of equilibria, E(X,Wn),

E0(X,Wn) =
{
ξe,1(X,Wn), · · · , ξe,D(X,Wn)

}
,

we can derive an approximation to the likelihood function (2.14):

L̃(Y ;X,Wn) =
D∑
d=1

ρ(ξe,d)
n∏
i=1

f(yi|ξe). (4.21)

For example, we can set

ρ̃(ξe,d;E0(X,Wn), α) =
exp(α

′
γ(ξe,d;X,Wn))∑D

d′=1
exp(α′γ(ξe,d

′
;X,Wn))

. (4.22)

Then we derived the (approximated) sample likelihood function:

L̃(y;X,Wn) =
D∑
d=1

ρ̃(ξd,k;E(X,Wn), α)
n∏
i=1

f(yi|ξe,k). (4.23)

When there areG independent groups, the corresponding approximation to the log likelihood

of the whole sample is

log L̃(Y1, · · · , YG|β, λ, σ, α)

=
G∑
g=1

log(

Dg∑
d=1

exp(α
′
γ(ξe,g,d;Xg,Wg))∑Dg

d′=1
exp(α′γ(ξ̃e,g,d

′
;Xg,Wg))

ng∏
i=1

f(yi,g|ξe,g,d)).
(4.24)

As for identification, β, λ, and σ can still be identified using the strategy of “identification

at infinity”. That is because those parameters can be separately from α using this technique.

However, it is more difficult to identify α. The reason is that (4.23) is not the exact likelihood

but an approximation. However, as the set of equilibria is determined by β, λ, and σ, it does

not depend on α. If we assume that all independent groups choose the same approximation,

Dg = D, and use the same probability mass, (4.22), we can identify α from variation across
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groups.

Parameters can be estimated either by directly maximizing the approximated likelihood

function or simulated moment conditions, similar to the approach used when all exogenous

characteristics are public information. The performance of estimates relies on the approxima-

tion. In this paper, actually, there are two types of approximations. First, approximate the set

of equilibria by a finite subset. Second, approximate each of those functions.

Regarding the equilibrium conditional expectation on i’s behavior based on a structure of

private information, Ji,m, as a function of the realization of Xp
i,m, the model under a general

form of incomplete information about Xp
i ’s can be estimated in a similar way.

5 Peer Effects

Consider the case that an agent’s behaviors are affected by the performances of her peers. That

is, Wn,ij = 1 for all i 6= j. Since every agent makes predictions on anyone else, we denote the set

of all possible private information aboutXp
i ’s in the group as Ĵ =

{
J̃ : J̃ = Ji for some i = 1, · · · , n

}
.

Denote the number of elements in this set as M0. We can denote the set as Ĵ =
{
J̃1, · · · , J̃M0

}
.

For each i, there is a unique m(i) with 1 ≤ m(i) ≤ M0 such that Ji = J̃m(i). We use xpJ,m to

represent one realization of the random vector Xp
J,m corresponding to the private information,

J̃m. The corresponding support is denoted as XpJ,m. Note that Xp
J,m(i) = Xp

Ji
, representing the

private information known to i. The conditional expectation function, ξe = (ξei,m), takes the

following special form:

ξe(xpJ,1, · · · , x
p
J,M0

)i,m = ξei,m(xpJ,m) = E[Hi(u(Xi) + λ
∑
j 6=i

ξej,m(Xp
m(i)))|X

p
J,m = xpJ,m, Z], (5.1)

for all i = 1, · · · , n, m = 1, · · · ,M0, and xpJ,m ∈ XpJ,m.17 When all exogenous covariates are

public information, ξe reduces to an n×1 vector, satisfying ξei = E[Hi(u(Xi)+λ
∑

j 6=i ξ
e
j )|Z = z].

Since only the total expected behaviors of peers is taken into account when an agent is making

decisions, we wonder whether it is possible to represent an equilibrium by a vector-valued

function, the dimension of whose range is less than n. That means the number of coordinate

functions, ξei,m’s, is reduced. Lee, Li and Lin(2014) prove that this is possible in the binary choice

17In the general case, we define the expectation about i conditional on private information for agents other
than i. For convenience, when discussing peer effects, we also define conditional expectation about i based on
private information the same as i’s. Since Wn,ii = 0 for all i, model equilibria and implications do not change
with this small alteration.
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model when all exogenous characteristics are public information and only the idiosyncratic

shocks are privately known. Their results can be extended to the general setting in this paper.

Let ξ = (ξ1, · · · , ξM0
) be a vector-valued function such that

ξ(xpJ,1, · · · , x
p
J,M0

)m = ξm(xpJ,m), (5.2)

for any m = 1, · · · ,M0. For any i, there is a unique m(i) = 1, · · · ,M0, such that Ji = J̃m(i).

Consider a function equation system, Gi(ξm(i), ξi;X,Wn) = 0, where ξi = (ξi,1, · · · , ξi,M0) is a

vector-valued function which satisfies (5.2) and that for any m,(
Gi(ξm(i), ξi;X,Wn)(xpJ,1, · · · , x

p
J,M0

)
)
m

=
(
Gi(ξm(i), ξi;X,Wn)m

)
(xpJ,m)

=E[Hi(u(Xi) + λξm(i)(X
p
J,m(i))− λξi,m(i)(X

p
J,m(i)))|X

p
J,m = xpJ,m, Z = z]− ξi,m(xpJ,m)

=0,

(5.3)

for all xpJ,m ∈ XpJ,m. Applying the Brouwer fixed point theorem, for any ξm(i), there is a

function ξi satisfying the above system of equations. For any χ = (χ1, · · · , χM0) with χm ∈

L1(XpJ,m,BJ,m, µp;<1), consider the linear operator ∆i(ξm(i), ξi;X,Wn) such that(
∆i(ξm(i), ξi;X,Wn)(χ)

)
m

(xpJ,m)

=− λE[DHi

(
u(Xi) + λξ(Xp

J,m(i))− λξi,m(i)(X
p
J,m(i))

)
·

χm(Xp
J,m(i))

∣∣Xp
J,m = xpJ,m, Z = z]− χm(xpJ,m);

for m = m(i); and (
∆i(ξm(i), ξi;X,Wn)(χ)

)
m

(xpJ,m) = −χm(xpJ,m),

for m = 1, · · · ,M0 and m 6= m(i), where DHi(a) denotes the derivative of Hi(·) at point

a. ∆i(ξm(i), ξi;X,Wn) is the Fréchet derivative of Gi with respect to ξi at (ξm(i), ξi;X,Wn). If

∆(ξm(i), ξi;X,Wn) is an isomorphism, by the Implicit Function Theorem in Banach spaces, for a

neighborhood ξ
e
m(i), there is only one ξei such that the functional equation, Gi(ξm(i), ξi;X,Wn) =

0 is satisfied. In this way, we can derive an operator Λi, which defines each function ξi as the

image of ξmi such that Gi(ξm(i),Λi(ξm(i));X,Wn) = 0. If ∆i(ξm(i), ξi;X,Wn) is an isomorphism

for all i, we call the group to be regular.

Proposition 5.1 Suppose that the group is regular. If there is a function ξ
e

= (ξ
e
1, · · · , ξ

e
M0

)
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such that it satisfies (5.2), and

ξ
e
m(xpJ,m) =

n∑
i=1

E[Hi(u(Xg, Xc
i , X

p
i ) + λξ

e
m(i)(X

p
J,m(i))

− λ(Λi(ξ
e
m(i)))m(i)(X

p
J,m(i)))|X

p
J,m = xpJ,m, z],

(5.4)

where Λi(·) is defined above, then there is a vector of functions,

ξe = (ξe1,1, · · · , ξe1,M(0), · · · , ξ
e
n,1, · · · , ξen,M0

),

such that (5.1) holds for all i, m, and xpJ,m ∈ XpJ,m. On the contrary, if there is a vector

of functions, ξe = (ξe1,1, · · · , ξe1,M0
, · · · , ξen,1, · · · , ξen,M0

), satisfying (5.1), there is a function

ξ
e

= (ξ
e
1, · · · , ξ

e
M0

) such that (5.2) and (5.4) hold.

Proof. See Appendix F.

Particularly, when all exogenous characteristics are public information, the functional equa-

tion system (5.3) reduces to

Gi(ξ
e
, ξei ;X,Wn) = Hi(u(Xi) + λξ

e − λξei )− ξei = 0, (5.5)

which is just a nonlinear equation. The regularity condition then reduces to

−λDHi(u(Xi) + λξ
e − λξei )− 1 6= 0.

We can see that if DHi(a) > 0 for all i and a and λ ≥ 0, the regularity condition is satisfied.

Then a BNE is equivalent to the expected group total outcomes, ξ
e
, which is a scalar. The

system analyzed by Lee, Li and Lin (2014) corresponds to the special case that Hi(a) = Fε(a).

When each Xp
i is known to i only and the joint distribution of Xp

i ’s conditional on the public

information Z = z is exchangeable with a pdf fp(·), (5.3) takes the following form:

Gi(ξ
e
, ξei ;X,Wn)(x)

=

∫
Xp
Hi(u(Xg, Xc

i , x̃) + λξ
e
(x̃)− λξei (x̃))fp(x̃|x)dx̃− ξei (x)

=0,

(5.6)

for all i and x ∈ Xp. In this case, a BNE is equivalent to the expectation of group total outcomes

conditional on the realization of an individual’s self-known characteristics. ξ
e
(·) is a function

mapping the realization of that privately known characteristics to a real number. Therefore,

focusing on peer effects, the dimension of an equilibrium can be reduced, simplifying estimation.
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6 Binary Choice Models: Analysis and Experiments

This section discusses in detail the equilibrium sets of two forms of binary choice models, (2.5)

and (2.6). Additionally, by Monte Carlo experiments, there is a comparison about the small

sample performances between the maximum likelihood estimation with complete likelihood for

multiple equilibria in this paper and the nested fixed point maximum likelihood estimation

assuming unique equilibrium used by Yang and Lee(2017).

6.1 Binary Choice Model I

Consider the model, (2.1) and (2.2), where hi(z) = I(z > 0) for all i, such that (2.5) holds.

According to Yang and Lee(2017), this corresponds to a game where agents in a group si-

multaneously choose between 0 and 1. In this case, the expected utility following choice “0”

is normalized to be zero. Instead, if i chooses “1”, her expected utility is affected by her

expectations about others’ actions, u(Xi) + λ
∑

j 6=iWn,ijE[yj |Xp
Ji
, Z] − εi. Therefore, yi =

I(u(Xi) + λ
∑

j 6=iWn,ijE[yj |Xp
Ji
, Z]− εi > 0). The entry game for a group of firms in the same

industry is a case in point. Discussions in this section focuses on the case that all Xi’s are public

information and εi’s are i.i.d. normal with mean 0 and variance 1. It follows from the previous

analysis that an equilibrium is an n× 1 vector in ξ ∈ [0, 1]n, such that

ξi = Φ(ui + λ
∑
j 6=i

Wn,ijξj), (6.1)

for i = 1, · · · , n, where Φ(·) is the cdf for standard normal distribution and ui is a simplified

notation for u(Xi).

The investigation of the equilibrium set begins with the special case that every two group

members are associated with each other. That is, Wn,ij = 1 for all i 6= j. As it is shown in

Section H, in this case, an equilibrium conditional expectation is a scalar and can be represented

as a zero of a nonlinear function. The characteristics of the equilibrium set is summarized by

the following proposition,

Proposition 6.1 In Binary Choice Model I (2.5), consider a group of n agents such that any

two of them are associated with each other, i.e., Wn,ij = 1 for all i 6= j. Suppose that λ 6= 0.

• If −
√

2π < λ < 0, there is a unique equilibrium;
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• When λ > 0, there is a unique equilibrium if

min
1≤i≤n

ui >
λ

2
, (6.2)

or

max
1≤i≤n

ui < −
λ

2
, (6.3)

where Φ(·) and φ(·) are respectively the cdf and pdf of the standard normal distribution.

Proof. See Appendix G.

From Proposition 6.1, it is more likely to have multiple equilibria when λ > 0 than it is

when λ < 0. Thus, further investigation of the equilibrium set focuses on the case that λ > 0.

Figures ?? to ?? illustrates the characteristics of the equilibrium set as the group population

and interaction intensity varies. Figures 2 and 3 show that there is a unique equilibrium when

(6.2) is satisfied. Figure 2 corresponds to the case that agents are symmetric with ui = u = 2

for all i. Figure 3 is for the case that ui’s are heterogeneous and vary from 1 to 2. When neither

(6.2) nor (6.3) is satisfied, as it is shown by Figures 4 and 5, there can be multiple equilibria.

In Figure 4, symmetric agents have ui = u = −2 for all i. However, ui’s change from -3 to -2 in

Figure 5.

In the above graphs, there are at most three equilibria. Actually, the number of equilibria

is no more than three under a reasonable condition.

Lemma 6.1 Suppose that 0 < λ < 2
√

2π
3 . For the function c(a;λ) = λφ(a)+1+a2(2λφ(a)−1),

there is a+(λ) > 0, such that c(a;λ) > 0 for −a+(λ) < a < a+(λ); c(a+(λ);λ) = c(−a+(λ);λ) =

0, and c(a;λ) < 0, for a < −a+(λ) or a > a+(λ). In addition, a+(λ) increases with λ.

Proof. See Appendix G.

Proposition 6.2 In Binary Choice Model I (2.5), consider a group of n agents such that

any two of them are associated with each other, i.e., Wn,ij = 1 for all i 6= j. Suppose that

0 < λ < 2
√

2π
3 . There are at most three equilibria if

min
1≤i≤n

ui > λΦ(a+(λ)) + a+(λ), (6.4)

or

max
1≤i≤n

ui < λΦ(−a+(λ))− a+(λ)− λn. (6.5)
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Proof. See Appendix G.

For general social relations, an equilibrium is represented by an n×1 vector, ξ = (E[y1], · · · , E[yn])
′

and is a zero of a system of nonlinear equations. Applying Proposition 3.2, there is a unique

equilibrium if the sign of the determinant of the following matrix does not change as ξ varies

in [0, 1]n:

λ



φ(u1 + λ
∑

j 6=1Wn,1jξj) 0 · · · 0

0 φ(u2 + λ
∑

j 6=2Wn,2jξj) · · · 0

...
...

. . .
...

0 0 · · · φ(un + λ
∑

j 6=nWn,njξj)


Wn − In. (6.6)

For a graphical illustration, suppose that u(Xi) is a linear function:

u(Xi) = β0 +Xc
i,1β1 +Xc

i,2β2, (6.7)

where Xc
i,1 and Xc

i,2 are two commonly known exogenous characteristics. Take β∗0 = 0, β∗1 =

β∗2 = 1. Simulate one sample with G = 100 independent groups, each of which has n =

5 members. In each group, the number of social relations an agent can build is randomly

determined, ranging from 0 to n − 1. Based on the randomly generated total link number for

agent i, Fi =
∑

j 6=iWn,ij , for each j 6= i, generate a random number, rnn,ij . Then Wn,ij = 1,

if rnn,ij is among the Fi largest ones. The social relation matrix, Wn, is not row-normalized.

Characteristics of the equilibrium set in this case are illustrated by Figures 6 and 7. It can be

seen that for Binary Choice Model I, although the sufficient condition for equilibrium uniqueness

in Yang and Lee(2017) is violated for a big proportion of groups when λ is a little bit bigger than

0.6, for groups in this sample, when λ is within 0 and 1, there is only a unique equilibrium. As

λ increases, the average equilibrium outcomes and the proportion of agents who choose action

1 increase.

In the Monte Carlo experiments, the social relation matrix is constructed in the same way

as it is for the illustration in Figures 6 and 7. There are L = 400 simulations. In each simulated

sample, there are G independent groups with homogeneous population n. n is fixed at 5 in

the experiments. There are two cases about the number of independent groups, G = 100

and G = 200. The true value of the interaction intensity is λ∗ = 0.8. Table 1 summarizes
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the estimation results for three regression methods. Regression I is the conventional Probit

estimation without social interactions. Regressions II and III take into account the interactions

among socially related agents. Regression II assumes condition (2.12) is satisfied and uses

the contraction mapping iteration method to solve for the (assumed) unique equilibrium. On

the contrary, Regression III does not make restrictive assumptions on the intensity of social

interactions, λ, or the number of equilibrium in estimation. It allows for multiple equilibria, uses

the homotopy continuation method to compute the equilibrium set, and chooses the equilibria

with maximal expected probabilities for choice “1” to complete the model. From the table, it

can be seen that Regression III outperforms Regression I and II in terms of parameter estimation

biases and the value of estimated average log likelihoods. That is because of the distortions

imposed by (2.12). From Table 1, condition (2.12) is violated by 67.44% (67.35%)of the groups

in the sample on average when the number of groups is G = 100 (G = 200) under the true

parameter values. Additionally, the average upper bound on the interaction intensity for a

sample imposed by (2.12), 0.6267, is very close to the estimates of λ in Regression II (The

estimate for λ is 0.6263 when G = 100 and 0.6266 when G = 200.) Therefore, imposing (2.12)

can be restrictive when it is violated by a large proportion of the groups in a sample.

6.2 Binary Choice Model II

In the basic framework, (2.1) and (2.2), take hi(z) = 2I(z > 0) − 1 for all i. Then (2.6)

holds. Similar to Brock and Durlauf(2001), this model describes the equilibrium outcomes of

a simultaneous move game with discrete choices where the utility an agent gets depends on

the difference between her own action and those of her friends. To be specific, suppose that

in a group of n agents, an agent i can choose two actions, -1 and 1. Her utilities depend on

her own choice and those of the agents who she is associated with. If she chooses 1, with

others choosing y−i, her utility is ũ(Xi, 1) + λ̃
∑

j 6=iWn,ijyj + ε̃1i . If she chooses -1, her utility

is ũ(Xi,−1) − λ̃
∑

j 6=iWn,ijyj + ε̃−1
i . When λ̃ > 0, an agent benefits from taking the same

action as her friends and/or peers do. In contrast, when λ̃ < 0, an agent gets rewarded by

distinguishing herself from her friends and/or peers. Suppose that all exogenous characteristics

are public information but the idiosyncratic shocks are private information. As i does not know

her friends’ actions when her decisions are made, she has to maximize her expected utility,
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which is ũ(Xi, 1) + λ̃
∑

j 6=iWn,ijE[yj ] + ε̃1i for action 1 and ũ(Xi,−1)− λ̃
∑

j 6=iWn,ijyj + ε̃−1
i for

action -1. Thus, she will choose 1 if

ũ(Xi, 1)− ũ(Xi,−1) + 2λ̃
∑
j 6=i

Wn,ijE[yj ]− (ε̃−1
i − ε̃

1
i ) > 0.

Define u(Xi) = ũ(Xi, 1)− ũ(Xi,−1), λ = 2λ̃, and εi = ε̃−1
i − ε̃1i . Plug them into (2.1) and (2.2).

Choose hi(z) = 2I(z > 0)− 1. Then the Type II model for binary choices is derived. Suppose

that (ε̃1i , ε̃
−1
i )’s are i.i.d. normal with zero mean and variance 1

2 . An equilibrium conditional

expectation, ξ = (ξ1, · · · , ξn)
′

= (E[y1], · · · , E[yn])
′
, satisfies

ξi = 2Φ(u(Xi) + λ
∑
j 6=i

Wn,ijξj)− 1

= 2Φ(ũ(Xi, 1)− ũ(Xi,−1) + 2λ̃
∑
j 6=i

Wn,ijξj)− 1.

(6.8)

If any two agents are associated with each other, i.e., Wn,ij = 1 for any i 6= j, λ represents

the intensity of influences from any other group member. Based on the previous discussions, in

this case, the equilibrium can be described by the group total expected outcome, ξ =
∑n

i=1 ξi =∑n
i=1E[yi]. Similar to Binary Choice Model I, ξ can be described as a zero of a nonlinear

function. It is possible to characterize the equilibrium set by analyzing this function.

Proposition 6.3 In Binary Choice Model II (2.5), consider a group of n agents such that any

two of them are associated with each other, i.e., Wn,ij = 1 for all i 6= j. Suppose that λ 6= 0.

• If −
√

2π
2 < λ < 0, there is a unique equilibrium;

• When λ > 0, there is a unique equilibrium if

min
1≤i≤n

ui > λn, (6.9)

or

max
1≤i≤n

ui < −λn, (6.10)

where Φ(·) and φ(·) are respectively the cdf and pdf of the standard normal distribution.

Proof. See Appendix G.

Compare Proposition 6.1 and Proposition 6.3, it is easy to see that for both types of the

Binary choice models, it is easier to ensure uniqueness when λ < 0 than it is when λ > 0.
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Additionally, the sufficient conditions for a unique equilibrium is more stringent for the Type

II model of binary choices than it is for the Type I model. Equilibrium multiplicity for the

Type II Binary Choice model is illustrated by Figures ?? to ??. Figures 8 and 9 show that

there is a unique equilibrium when (6.9) is satisfied. Figure ?? is for the case that in a group

of population n, ui = n + 1 for all i. Figure 9 depicts the case for heterogeneous agents such

that max1≤i≤n ui = n + 3 and min1≤i≤n ui = n + 1. Figures 10 and 11 show that there can

be multiple equilibria when both (6.9) and (6.10) are violated. Figure 10 corresponds to the

case of homogeneous agents with ui = u = 1 for all i. The case for heterogeneous agents with

ui’s randomly change from 1 to 2 is shown in Figure 11. It is interesting to see that there are

multiple equilibria in this case for the Type II model of Binary choices (as it is shown in Figure

11) and there is a unique equilibrium for the Type I model (as it is shown in Figure 3). These

graphical illustrations confirm that it is more likely to have multiple equilibria in the Type II

model of binary choices.

Similar to the discussions for the Type I binary choice model, under a certain condition,

there are at most three equilibria in the Type II model.

Lemma 6.2 Suppose that 0 < λ <
√

2π
3 . Fix λ, define a function c̃(a;λ) = 2λφ(a) + 1 +

a2(4λφ(a) − 1). There is ã+(λ) > 0, such that c̃(a;λ) > 0, for −ã+(λ) < a < ã+(λ);

c̃(ã+(λ);λ) = c̃(−ã+(λ);λ) = 0; and c̃(a;λ) < 0, for a < −ã+(λ) or a > ã+(λ). In addi-

tion, ã+(λ) increases with λ.

Proof. See Appendix G.

Proposition 6.4 In Binary Choice Model II (2.6), consider a group of n agents such that

any two of them are associated with each other, i.e., Wn,ij = 1 for all i 6= j. Suppose that

0 < λ <
√

2π
3 . There are at most three equilibria if

min
1≤i≤n

ui > λ(2Φ(ã+(λ))− 1 + n) + ã+(λ), (6.11)

or

max
1≤i≤n

ui < λ(2Φ(−ã+(λ))− 1− n)− ã+(λ). (6.12)

Proof. See Appendix G.
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For general social relation matrix, Wn, an equilibrium is an n× 1 vector satisfying a system

of nonlinear equations. Applying Proposition 3.2, there is a unique equilibrium if the sign of

the determinant of the following matrix does not change as ξ varies in [−1, 1]n:

2λ



φ(u1 + λ
∑

j 6=1Wn,1jξj) 0 · · · 0

0 φ(u2 + λ
∑

j 6=2Wn,2jξj) · · · 0

...
...

. . .
...

0 0 · · · φ(un + λ
∑

j 6=nWn,njξj)


Wn−In.

(6.13)

When there are multiple equilibria, the selection rule is applied to complete the model. Based

on previous discussions, there are a finite number of equilibria. Denote them by
{
ξe,1, · · · , ξe,L

}
.

Suppose that equilibria are selected according to the total (ex ante) expected utilities. That is,

γ(ξe,l, X,W ) =
∑n

i=1 Ui(ξ
e,l), where

Ui(ξ
e,l)

=

∫
I(ũ(Xi, 1) + λ̃

∑
j 6=i

Wn,ijξ
e,l
j + ε̃1i > ũ(Xi,−1)− λ̃

∑
j 6=i

Wn,ijξ
e,l
j + ε̃−1

i )

· (ũ(Xi, 1) + λ̃
∑
j 6=i

Wn,ijξ
e,l
j + ε̃1i )

1

σ2
φ(
ε̃1i
σ

)φ(
ε̃−1
i

σ
)dε̃1i dε̃

−1
i

+

∫
I(ũ(Xi, 1) + λ̃

∑
j 6=i

Wn,ijξ
e,l
j + ε̃1i ≤ ũ(Xi,−1)− λ̃

∑
j 6=i

Wn,ijξ
e,l
j + ε̃−1

i )

· (ũ(Xi,−1)− λ̃
∑
j 6=i

Wn,ijξ
e,l
j + ε̃−1

i )
1

σ2
φ(
ε̃1i
σ

)φ(
ε̃−1
i

σ
)dε̃1i dε̃

−1
i

=(ũ(Xi, 1)− ũ(Xi,−1))
ξe,li + 1

2
+ λ̃

∑
j 6=i

Wn,ijξ
e,l
j ξi + ũ(Xi,−1)

+

∫
ε̃1iΦ
( ũ(Xi, 1)− ũ(Xi,−1) + 2λ̃

∑
j 6=iWn,ijξ

e,l
j + ε̃1i

σ

) 1

σ
φ(
ε̃1i
σ

)dε̃1i

+

∫
ε̃−1
i Φ

( ũ(Xi,−1)− ũ(Xi, 1)− 2λ̃
∑
j 6=iWn,ijξ

e,l
j + ε̃−1

i

σ

) 1

σ
φ(
ε̃−1
i

σ
)dε̃−1

i

=(u(Xi) + λ
∑
j 6=i

Wn,ijξ
e,l
j )

ξe,li
2

+ u(Xi)
1

2
+ ũ(Xi,−1)

+

∫
ε̃1iΦ
(u(Xi) + λ

∑
j 6=iWn,ijξ

e,l
j + ε̃1i

σ

) 1

σ
φ(
ε̃1i
σ

)dε̃1i

+

∫
ε̃−1
i Φ

(−u(Xi)− λ
∑
j 6=iWn,ijξ

e,l
j + ε̃−1

i

σ

) 1

σ
φ(
ε̃−1
i

σ
)dε̃−1

i

(6.14)

In this model, σ =
√

1
2 . ũ(Xi,−1) is normalized to be equal to 0. Thus, individual expected

utilities can be computed given the model primitives, ui’s, and an equilibrium set. Although

there are no explicit analytical forms for the last two integrals in (6.14), they can be computed

numerically by the Gaussian quadrature.
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For further investigation of the equilibrium set for general social relations, suppose that

u(Xi) = ũ(Xi, 1) − ũ(Xi,−1) takes the linear function form (6.7). Like the discussions in the

Type I Binary Choice model, take β∗0 = 0 and β∗1 = β∗2 = 1. Consider a sample of G = 100

independent groups. Each of them has n = 5 members. In a group, the number of social links

an agent has is randomly determined. For each i, generate a random number, fi. If fi ≥ 0.5,

the number of social links for i, Fi =
∑

j 6=iWn,ij , is n − 1; otherwise, Fi = n − 2. Given

Fi, generate random numbers, rnij for each j 6= i. Then Wn,ij = 1 if rnij is among the Fi

largest. Use the homotopy continuation to compute the equilibrium set for this sample. Figures

12 and 13 illustrate the characteristics of the equilibrium set and the (selected) equilibrium

outcomes. According to Yang and Lee(2017), when |λ| < 0.3133, there is a unique equilibrium.

From Figure 12, there is still a unique equilibrium when λ is a little bit bigger than 0.3133.

However, unlike the Type I model for binary choices, as λ continues to increase, some groups

have more than one equilibria. Additionally, there is an increasing tendency for the sample

average number of equilibria and the proportion of groups with multiple equilibria. Figure

13 shows the characteristics of the selected outcomes corresponding to the selection criterion

(6.14). As the interaction intensity, λ, increases, there is not an obvious trend for the sample

average expected equilibrium outcomes, actual outcomes, the proportion of agents who choose

1, and the proportion of agents who choose -1. This is different from the characteristics of the

equilibrium outcomes in the Type I model of binary choices, where as λ increases more agents

choose action 1 and the average equilibrium outcome also increases (see Figure 7).

Samples are generated in the same way for the Monte Carlo experiments. There are L = 400

simulations. Consider two values that λ takes, 0.2 and 0.8. When λ = 0.2, the sufficient

condition for equilibrium uniqueness in Yang and Lee (2017) is satisfied. However, when λ = 0.8,

as it is shown by Figure ??, it is possible to have multiple equilibria. In experiments, four

estimation method are compared: (1) conventional maximum likelihood estimation without

social interactions, i.e., assuming λ = 0; (2) nested fixed point maximum likelihood estimation

which assumes a unique equilibrium, restricts λ, and uses contraction mapping iterations to

compute the equilibrium; (3) nested fixed point maximum likelihood estimation which assumes

a unique equilibrium and computes the equilibrium by solving nonlinear equations without

restricting λ; and (4) maximum likelihood estimation for complete likelihood with equilibrium
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selection which uses the homotopy continuation method to compute the set of equilibria. Results

are summarized in the Tables 2 and 3.

It is obvious that the conventional regression which ignores the interactive effects among

socially associated agents can bring in more biases than regressions which take into account

social interactions even when the intensity of social interactions is moderate. When λ∗ = 0.2,

there is a unique equilibrium according to Yang and Lee(2017). From Table 2, the last three

regression methods have similar performances. However, with large interaction intensity, λ∗ =

0.8, from the tabulated results in Table 3, Regression IV outperforms the other three regressions.

As the upper bound on interaction intensity which ensures equilibrium uniqueness is 0.3133 on

average, which is far smaller than the true parameter value, λ∗ = 0.8, when |λ| is restricted

within this bound, estimations are biased, which is shown by the performances of Regression

II. Since the average estimates for λ by Regression I is 0.3109, which is very close to 0.3133,

this upper bound is nearly binding. A potential improvement may be achieved by relaxing the

restrictions on |λ| and computing the equilibrium by solving a system of nonlinear equations,

using numerical algorithms such as the Newton’s method. This method is used in Regression

III. Although this method performs well for moderate interactions when there is a unique

equilibrium (as Table 2 shows), when λ∗ = 0.8, it brings in biased estimation. That is because

this method still assumes that there is a unique equilibrium. However, the average number of

equilibria in the simulated sample is 2.2918 and 78.11% of groups have more than one equilibria.

In Regression IV, equilibrium multiplicity is considered and equilibria are selected according

their expected total utilities. It can be seen that Regression IV has much smaller biases and

much larger estimated sample log likelihoods than those of other regression methods. That

is, the computation intensity of Regression IV is rewarded with good estimation performances

when there are multiple equilibria.

7 Conclusion

In a general framework of social interactions under incomplete information with multiple equi-

libria, this paper investigates the approach to complete the model, along with identification,

computation, and estimation issues. The proposed solution to multiple equilibria extends the

random equilibrium selection method used by Bajari et al(2010b) and (2010c) to a setting,
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which is general in the types of behaviors and information structures. Although this all-solution

method can be computationally intensive, it does not impose strong assumptions on the data

generating process and can be applied to a broad range of empirical studies. Although the model

have specific structures on the interdependence among socially associated agents, it incorporates

discrete and continuous choices, bounded and unbounded outcomes, unbounded idiosyncratic

shocks, as well as different information structures. Therefore, the characterization of equilibria

in this paper complements the existence theorems for the Bayesian Nash Equilibrium in the

recent theory literature.

Group unobservables are important in empirical studies. In this paper, there is a brief

discussion for the case when those unobservables only affect individual choices but not the

equilibrium selection rule. It will be an interesting extension if that assumption is relaxed.

Using the stochastic selection rule, we do not need to worry about the case that two equilib-

ria score the same according to that criterion, for only the distribution of equilibrium selection

matters. If the deterministic rule is used, however, the model will still be incomplete when

there is a tie between two equilibria according to the deterministic objective function. However,

if we can apply some mathematical tools, such as optimal control, optimization over the equi-

librium set may be less computationally intensive than the computations of all the equilibria.

Consequently, further investigations of the deterministic rule are of significance.

Appendices

A Games and Equilibria

A.1 Game Explanations

In the model, (2.1) and (2.2), an agent’s s behavior is interacted with those of others when

she is uncertain about some of their attributes. Hence, we can view outcomes of the model

as the outcome of an equilibrium for a simultaneous move game with incomplete information.

According to Harsanyi (1967a; 1967b), assuming that agents’ payoffs are related to a randomly

determined “state”, an agent’s uncertainty comes from the fact that her signal does not com-

pletely recover the true state. Then predicting others’ unknown characteristics is equivalent to
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making inference about the realized state from her own signal. We follow the setup in Osborne

and Rubinstein (1994).

For n group members, let Xpi represent the support of Xp
i and E the common support of εi’s.

The set of states,
∏n
i Xi×En, is the set of all possible Xp

i ’s and εi’s for all players. In this case,

player i’s “type” is her private information, Xp
Ji

, and idiosyncratic shocks, εi. Her set of types

is then Ti =
∏
k:Ji(k)=1 Xk × E . The signal function is a mapping from the states to her type,

τi :
∏n
i Xi×En →

∏
k:Ji(k)=1 Xk×E . Her prior belief on the set of states is the joint distribution

of Xp
i ’s and the distribution of the i.i.d. shocks, Fε(·), which is the same for all agents. The set

of actions for agent i is denoted by Yi. Her strategy is a contingent plan specifying the action

to take for each realized type, si :
∏
k:Ji(k)=1 Xk × E → Yi. The payoff received by an agent

depends on actions taken by all group members, y = (y1, · · · , yn) ∈
∏n
i=1 Yi, as well as the

uncertain state. se = (se1(·), · · · , sen(·)) is a Bayesian Nash Equilibrium (BNE) in this model if

sei (X
p
Ji
, εi) = hi(u(Xi) + λ

∑
j 6=i

Wn,ijE[sej(X
p
Jj
, εj)|Xp

Ji
, Z, εi]− εi). (A.1)

With specific hi(·) functions, it is possible to build a structural model. See Yang and

Lee(2017) for continuous and binary choices and Yang, Qu and Lee (2016) for the Tobit model

when agents’ actions are subject to the non-negative constraint.

A.2 Equilibrium and Expectations

Under the assumption that observed outcomes are realizations of a BNE (A.1), we relate equi-

librium strategies, se = (se1(·), · · · , sen(·)), to conditional expected outcomes in an equilibrium,{
E[yj |Xp

Ji
, Z = z]

}
. Pick any i and k such that i 6= k. By consistency, we get that

E[yi|Xp
Jk
, Z] = E[hi(u(Xi) + λ

∑
j 6=i

Wn,ijE[yj |Xp
Ji
, Z = z]− εi)|Xp

Jk
, Z]. (A.2)

Therefore, given public information Z = z, for any i, conditional expectations on i’s behavior

depends on the private information. Two agents k and k
′
, where k 6= i, k

′ 6= i, and k 6= k
′
,

have the same expectations about i’s behavior if they have the same private information, i.e.,

Xp
Jk

= Xp
J
k
′ .

Similar to Yang and Lee (2017), conditional expectations can be modeled as functions and

embedded into a function space. In this paper, however, conditional expectation functions are
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defined in a different way in order to utilize properties of classical function spaces.18 Given social

relations Wn and information structure J = (J1, · · · , Jn), for each i, we collect all possible types

of private information which are used by others to predict her actions as,

Ĵi =
{
J̃ ∈ {0, 1}n : J̃ = Jj for some j s.t. Wn,ji 6= 0

}
. (A.3)

Denote the number elements in this set by Mi.
19 Considering that two agents may have the

same type of private information, Mi ≤
∑

j 6=iMn,ji. Labeling elements in Ĵi by m = 1, · · · ,Mi,

we get

Ĵi =
{
J̃i,1, · · · , J̃i,Mi

}
. (A.4)

For any j with Wn,ji 6= 0, there is exactly one vector in Ĵi representing j’s private information,

Jj . That is, there is a unique mi(j) ∈ {1, · · · ,Mi}, such that Jj = J̃i,mi(j). The mapping, mi(·),

defined in this way is onto. Let Xpi be the support of Xp
i (conditional on public information

Z = z). It is a subset of <kp .(Recall that kp is the dimension of Xp
i ’s.) For any (i,m), denote

by Xpi,m the support of privately known characteristics contained in J̃i,m. Then it is a subset of

the Euclidean space with dimension kp(
∑n

j=1 J̃i,m(j)). We denote its elements simply by xpi,m.

For example, if J̃i,m(j) = 1, for j = 2, 3; and J̃i,m(j) = 0, otherwise. Xpi,m is the support for

(Xp
2 , X

p
3 ). Its elements are realizations, (xp

′

2 , x
p′

3 )
′
. Define ξei,m : Xpi,m → <1 as

ξei,m(xpi,m) = E[yi|Xp

J̃i,m
= xp

J̃i,m
, Z = z]. (A.5)

Then ξei,m is a mapping from a subset of an Euclidean space with dimension kp
∑n

j=1 J̃i,m(j) to

18Treating the privately known characteristics used to make predictions as a random vector, Yang and Lee
(2017) define the conditional expectation about i’s behaviors as a function of all possible random vectors used
to make predictions. That function maps a random vector in its domain to a random variable, specifying the
value of conditional expectations for each realization of that random vector. Consider a group of 3 people as
an example. Agent 1 is linked to agents 2 and 3, i.e., W3,21 6= 0 and W3,31 6= 0. Xp

J2
and Xp

J3
are the private

information for 2 and 3 respectively. The conditional expectation about y1, ψ1, is then defined on the set of
random vectors, A1 =

{
Xp
J2
, Xp

J3

}
. ψ1(Xp

J2
) is a random vector, such that for each ω in the sample space

of Xp
i ’s, ψ1(Xp

J2
)(ω) = E[y1|Xp

J2
= Xp

J2
(ω), Z = z]. In our model, however, we define exclusively a function

for every possible type of private information that is used to predict i’s behaviors. For the aforementioned
example, if J2 6= J3, we define functions ξ1,J2 and ξ1,J3 , on the support of those random vectors. That is,
ξ1,J2(xpJ2) = E[y1|Xp

J2
= xpJ2 , Z = z] and ξ1,J3(xpJ3) = E[y1|Xp

J3
= xpJ3 , Z = z]. The conditional expectation

functions defined in this way are mappings from a subset of an Euclidean space to <1, which makes it convenient
to apply the properties of the classical Lp spaces.

19If Mi = 0, i’s actions does not influence others’ choices. Then expectations on her behaviors do not influence
the distribution of outcomes. It is redundant in the system. In computation, we can just exclude the redundancy.
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<1.20 Collecting all those functions, we derive a vector-valued function,

ξe = (ξe1,1, · · · , ξe1,M1
, · · · , ξen,1, · · · , ξen,Mn

),

whose domain is
∏n
i=1

∏Mi
m=1 X

p
i,m and range is <M , where M =

∑n
i=1Mi. ξ

e has two properties:

ξe(xp1,1, · · · , x
p
1,M1

, · · · , xpn,1, · · · , x
p
n,Mn

)i,m = ξei,m(xpi,m); (A.6)

and the equilibrium condition,

ξei,m(xpi,m) = E[hi(u(Xg, Xc
i , X

p
i ) +λ

∑
j 6=i

Wn,ijξ
e
j,mj(i)

(Xp
j,mj(i)

)− εi)|Xp
i,m = xpi,m, Z = z], (A.7)

for all i = 1, · · · , n, m = 1, · · · ,Mi, and xpi,m ∈ Xi,m.21 In particular, when all exogenous char-

acteristics are public information, conditional expectations only depend on public information.

In that case, E[yi|Z = z] is a scalar for any i and ξe reduces to an n×1 vector, ξe = (ξe1, · · · , ξen)
′
.

B Expectations, Equilibria, and Functions

In this appendix, we embed conditional expectation functions into a function space. For a

group with size n, social relations Wn and information structure J , we define a function space,

Ξ(Wn, J), such that each ξ ∈ Ξ(Wn,J ) is a mapping from an
∏n
i=1

∏Mi
m=1 X

p
i,m to <M , satisfying

1. For all i = 1, · · · , n, m = 1, · · · ,Mi, and xpi,m ∈ Xpi,m

ξ(xp1,1, · · · , x
p
1,M1

, · · · , xpn,1, · · · , x
p
n,Mn

)i,m = ξi,m(xpi,m). (B.1)

2.

max
1≤i≤n

max
1≤m≤Mi

∫
|ξi,m(xpi,m)|dµp <∞, (B.2)

where µp represents the L-S measure implied by the conditional distribution of Xp
i ’s given

public information Z = z.

20In principle, ξei,m can be defined on the whole Euclidean space. However, considering the support of Xp
i ’s

may not be full, it will be convenient to work with bounded subset of the Euclidean space sometimes. Therefore,
we just use an abstract subset at this stage.

21By our definition, given i, for each j 6= i, via the mapping mj(·), we find exactly the private information

J̃i,mj(i) = Ji. Thus, in (A.7), all the Xp
j,mj(i)

’s are the same. They are just Xp
Ji

, the random vector of exogenous

characteristics which are known by i.
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Define summation and scalar product in Ξ(Wn,J ) in a conventional way. According to (B.2),

define the norm on Ξ(Wn, J) as

‖ξ‖ = max
1≤i≤n

max
1≤m≤Mi

∫
|ξi,m(xpi,m)|dµp. (B.3)

Lemma B.1 The norm, ‖ · ‖, defined in (B.3) is well-defined.

Proof. It is obviously that ‖ξ‖ ≥ 0 for any ξ ∈ (Ξ(Wn,J ), ‖ · ‖) and ‖ξ‖ = 0 if and only if

ξ = 0 a.e. according to µp. For any real scalar α and ξ ∈ (Ξ(Wn,J ), ‖ · ‖),

‖αξ‖ = max
1≤i≤n

max
1≤m≤Mi

∫
|αξi,m(xpi,m)|dµp = |α| max

1≤i≤n
max

1≤m≤Mi

∫
|ξi,m(xpi,m)|dµp = |α|‖ξ‖.

For any two elements, ξ, ξ
′ ∈ (Ξ(Wn, J), ‖ · ‖),

‖ξ + ξ
′‖ = max

1≤i≤n
max

1≤m≤Mi

∫
|ξi,m(xpi,m) + ξ

′
i,m(xpi,m)|dµp

≤ max
1≤i≤n

max
1≤m≤Mi

∫
|ξi,m(xpi,m)|dµp + max

1≤i≤n
max

1≤m≤Mi

∫
|ξ′i,m(xpi,m)|dµp

= ‖ξ‖+ ‖ξ′‖.

L1(Xpi,m,Bi,m, µp;<1) is the space of all real-valued functions on Xpi,m which are measurable

under µp such that ‖χ‖1 :=
∫
Xpi,m

∫
|χ|dµp < ∞ for all χ ∈ L1(Xpi,m,Bi,m, µp;<1). This space

belongs to the class of Lebesgue spaces. According to Dunford and Schwartz (1958), it is a

Banach space. Since ξ is a vector-valued function composing of a finite number of coordinate

functions, with the norm defined as the maximal of the absolute integrable of its coordinate

functions, ξ ∈ (Ξ(Wn,J ), ‖·‖) if and only if each of its coordinates, ξi,e ∈ L1(Xpi,m,Bi,m, µp;<1).

Based on this finding, we derive the following result.

Proposition B.1 (Ξ(Wn,J ), ‖ · ‖) is complete. So it is a Banach space.

Proof. Take any Cauchy sequence,
{
ξk
}

in (Ξ(Wn, J), ‖ · ‖). That is,

‖ξk − ξl‖ = max1≤i≤n max1≤m≤Mi

∫
|ξki,m(xpi,m) − ξli,m(xpi,m)|dµp → 0, as k, l → ∞. Then∫

|ξki,m(xpi,m)− ξli,m(xpi,m)|dµp → 0 as k, l→∞ uniformly for all i = 1, · · · , n and m = 1, · · · ,Mi

in the L1 norm. For any η > 0, for each (i,m), the completeness of

L1(Xpi,m,Bi,m, µp;<1), implied that there is ξi,m ∈ L1(Xpi,m,Bi,m, µp;<1) such that there is

Ki,m(η) >, whenever k > Ki,m(η),
∫
Xpi,m
|ξki,m(xpi,m)−ξi,m(xpi,m)|dµp < η. Since the total number
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of coordinate function is finite, define ξ = (ξi,m)1≤i≤n,1≤m≤Mi . For K = maxi,mKi,m(η), when-

ever k > K, we have that ‖ξk−ξ‖ = max1≤i≤n max1≤m≤Mi

∫
Xpi,m
|ξki,m(xpi,m)−ξi,m(xpi,m)|dµp < η.

Moreover, since ξi,m ∈ L1(Xpi,m,Bi,m, µp;<1) for all (i,m),

max1≤i≤n max1≤m≤Mi

∫
Xpi,m
|ξi,m| <∞. That is, ξ ∈ (Ξ(Wn,J ), ‖ · ‖).

Proposition B.2 claims the equivalence between the BNEs and the equilibrium conditional

expectations. This proposition is proved below.

Proposition B.2 Conditional on public information Z = z, if se = (se1, · · · , sen) :
∏n
i=1 Ti ×

En →
∏n
i=1 Yi is a BNE of this model, then there is an equilibrium conditional expectation

function ξe satisfying conditions (A.6) and (A.7). On the contrary, if there is an equilibrium

conditional expectation function, there is a BNE for this model.

Proof of Proposition B.2. If se is a BNE, define ξe by

ξe(xp1,1, · · · , x
p
1,M1

, · · · , xpn,1, · · · , x
p
n,Mn

)i,m = ξei,m(xpi,m) = E[se(Xp
Ji
, εi)|Xp

J̃i,m
= xpi,m, z],

for any i, m, and xpi,m ∈ Xpi,m. It follows from (A.1) that

ξei,m(xpi,m) =E[hi(u(Xi) + λ
∑
j 6=i

Wn,ijE[sej(X
p
Jj
, εj)|Xp

Ji
, z, εi]− εi)|Xp

J̃i,m
= xpi,m, z]

=E[hi(u(Xi) + λ
∑
j 6=i

Wn,ijE[sej(X
p
Jj
, εj)|Xp

Ji
, z]− εi)|Xp

J̃i,m
= xpi,m, z]

=E[hi(u(Xi) + λ
∑
j 6=i

Wn,ijξ
e
j,mj(i)

(Xp
j,mj(i)

)− εi)|Xp

J̃i,m
= xpi,m, z].

In the above equation, the second equality comes from the independence among εi’s, and the

independence between the idiosyncratic shocks and exogenous covariates and social relations.

The third equality follows directly from the way in which ξe is defined. Note that Xp
j,mj(i)

= Xp
Ji

for any j with Wn,ij 6= 0. On the contrary, assume that ξe is an equilibrium conditional

expectation function, i.e., (A.6) and (A.7) are satisfied. Define se by sei (X
p
Ji
, εi) = hi(u(Xi) +

λ
∑

j 6=iWn,ijξ
e
j,mj(i)

(Xp
j,mj(i)

)− εi). Then we have that

E[Sej (X
p
Jj
, εj)|Xp

Ji
, z, εi] =E[hj(u(Xj) + λ

∑
k 6=j

Wn,jkξ
e
k,mk(j)(X

p
k,mk(j))− εj)|X

p
Ji
, z, εi]

=E[hj(u(Xj) + λ
∑
k 6=j

Wn,jkξ
e
k,mk(j)(X

p
k,mj(k))− εj)|X

p
Ji
, z]

=ξej,mj(i)(X
p
j,mj(i)

),
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where Xp
j,mj(i)

corresponds to Xp
Ji

. The second equality follows from the independence among

all εi’s and the independence between those shocks and exogenous characteristics. The third

equality is derived by applying (A.7). Therefore, by the above definition of se,

sei (X
p
Ji
, εi) = hi(u(Xi) + λ

∑
j 6=i

Wi,jE[Sej (X
p
Jj
, εj)|Xp

Ji
, z, εi]− εi).

C Proofs for Equilibrium Characterizations with Public Char-

acteristics

In this section, we discuss in detail the structure of the set of equilibria when all exogenous

covariates are public information. We first prove that there is no loss of generality by focusing on

regular groups. We impose Assumption C.1 in order to apply theorems in differential topology.

Assumption C.1 The functions, u(·) and Hi(·), for i = 1, · · · , n, are smooth. That is, they

have continuous partial derivatives of all orders.

In most models used in empirical and theoretical studies, u(·) is linear function of exogenous

covariates. Although hi(·) can be discrete, Hi(·) defined in Assumption 2.2 is usually smooth

as our examples show. In the subsequent discussions, we focus on the following case.

Definition C.1 For a group (X,Wn), an equilibrium ξe is regular if the derivative of S(·;X,Wn)

at ξe, DS(ξe;X,Wn) is non-singular. A group (X,Wn) is regular if each of its equilibrium is

regular. That is, DS(ξe;X,Wn) is non-singular for any ξe such that S(ξe;X,Wn) = 0.

When a group if regular, applying the Inverse Function Theorem, in a neighborhood of an

equilibrium, ξe, there is no other equilibria. That is to say, all equilibria are isolated from each

other. That property is important for the following discussion. We show in the proposition below

that there is no loss of generality by focusing on regular groups. Denote the support of X by

X. For any social matrix Wn, define function S̃ : <n × X→ <n by S̃(ξ,X;Wn) = S(ξ;X,Wn).

That is, given Wn, S(·;X,Wn) can be viewed as a family of smooth maps, indexed by the

exogenous covariates, X. By Assumption C.1, S̃ is smooth. Proposition C.1 follows from the

transversality theorem in differential topology.
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Proposition C.1 Given social matrix Wn, if DS̃(ξ,X;Wn) has full row rank for all (ξ,X)

with S̃(ξe;X,Wn) = 0, then for almost every X ∈ X, DS(ξe;X,Wn) is non-singular. That is,

almost all groups are regular.

Proof. The result follows from the transversality theorem in the context book by Guillemin and

Pollack (1974). If DS̃(ξe, X;Wn) has full row-rank, 0 is a regular value for S̃(·, X;Wn). Since

{0} is a singleton in <n, S̃(·, X;Wn) is transversal to {0}. From the transversality theorem,

S(·;X,Wn) is transveral to {0} for almost every X.

The following corollary shows that we can apply Proposition C.1 for a large class of models.

Corollary C.1 Suppose that u(·) is linear in exogenous covariates, i.e., u(Xi) = β0,0+Xg′β0,1+

Xc′
i β1. If β1 6= 0 and dHi(a)/da 6= 0 for any i and x ∈ <, DS̃(ξ,X;Wn) has full row rank for

all Wn. Then almost all groups are regular.

Proof of Corollary C.1. Without loss of generality, suppose that β1,1 6= 0, we have that

DS̃(ξ,X;Wn) =

(
λDH − In β1,1DH ∗

)
, where

DH = diag(dH1(x̃1)/dx, · · · , dHn(x̃n)/dx) is a diagonal matrix whose diagonal is composed of

the derivatives of Hi’s evaluated at x̃i = u(Xi) + λ
∑

j 6=iWi,jψj for all i. By the assumption,

none of dHi(x̃i)/dx is zero. Therefore, the rows for DS̃(ξ,X;Wn) are linearly independent. So

it has full row rank.

Although the function S(·;X,Wn) is defined on the whole space, <n, we usually begin

searching for an equilibrium in a region. According to Guillemin and Pollack (1974), some

properties of the set of solutions for S(ξ;X,Wn) = 0 inside a region can be derived by analyzing

the properties of a function on the boundary of that region. Denote the closed ball in <n

with radius r > 0 centered at the origin by B[0, r] = {x ∈ <n : ‖x‖E ≤ r}, where ‖ · ‖E is the

Euclidean norm. Its interior is the open ball, B(0, r) = {x ∈ <n : ‖x‖E < r}. Its boundary,

∂B[0, r] = {x ∈ <n : ‖x‖E = r}, is a sphere, centering at the origin with radium r > 0. In

particular, we call the ball a unit sphere if its radius is 1. It is standard to denote a unit sphere

in <n as Sn−1. If S(ξ;X,Wn) 6= 0 for any ξ ∈ ∂B[0, r], we can define a function, Ŝ(·;X,Wn),

on ∂B[0, r], as

Ŝ(ξ;X,Wn)i =
S(ξ;X,Wn)i
‖S(ξ;X,Wn)‖E

=
Hi(u(Xi) + λ

∑
j 6=iWn,ijξj)− ξi√∑n

i=1(Hi(u(Xi) + λ
∑

j 6=iWn,ijξj)− ξi)2
, (C.1)
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for i = 1, · · · , n. We can see that Ŝ(·;X,Wn) maps points on ∂B[0, r] to a point in Sn−1 ⊆ <n.

We now associate Ŝ(·;X,Wn) to a class of functions via homotopy. We analyze properties of

this function through deformation.

Definition C.2 C and D are smooth manifolds in Euclidean spaces.22 Smooth maps, R0 : C →

D and R1 : C → D are homotopic, if there exists a smooth map, R̃ : C × [0, 1] → D, such that

R̃(c, 0) = R0(c) and R̃(c, 1) = R1(c), for all c ∈ C, R̃ is called a homotopy between R0 and R1.

For any given t ∈ [0, 1], if tHi(u(Xi) + λ
∑

j 6=iWn,ijψj) − ψi 6= 0 for all i = 1, · · · , n and

ξ ∈ ∂B[0, r], by setting

Rt(ξ;X,Wn)i =
tHi(u(Xi) + λ

∑
j 6=iWn,ijξj)− ξi√∑n

i=1(tHi(u(Xi) + λ
∑

j 6=iWn,ijξj)− ξi)2
, (C.2)

we can derive a mapping from ∂B[0, r] to Sn−1. If that is possible for all t ∈ [0, 1], we get a

homotopy, R̃(·, ·;X,Wn) : ∂B[0, r]× [0, 1]→ S1 such that R̃(·, ·;X,Wn) = Rt(ξ;X,Wn). In that

case, Ŝ(·;X,Wn) is homotopic to the function R0(·;X,Wn) : ∂B[0, r]→ Sn−1:

R0(ξ;X,Wn)i =
−ξi√∑n
i=1(−ξi)2

=
−ξi
r
, (C.3)

for all i = 1, · · · , n. The simplicity of that function makes it convenient to derive properties

which are invariant to smooth changes in a homotopy and can be applied to Ŝ(·;X,Wn). To

make sure that this homotopy is well-defined, we impose Assumption 3.1 about the function,

T , as in (3.4). Figure 14 is a graphic illustration of the homotopy constructed for the H(·)

function:

H(ξ)i =
exp(β(h+ Jξj))− exp(−(β(h+ Jξj)))

exp(β(h+ Jξj)) + exp(−(β(h+ Jξj)))
, (C.4)

for i, j = 1, 2 and i 6= j, which corresponds to the Binary choice model analyzed by Brock and

Durlauf(2007) without imposing rational expectations, ξ1 = ξ2. We trace out the images of

Rt(ξ;X,Wn) for a point in the circle centerer at the original with a radius of 3, when t takes

various values and depict them with the same color and marks. We do that for four points,

(r, 0), (0, r), (−r, 0), and (−r,−r). For each of those points, their images in such a homotopy

form an interval in the unit circle in a smooth way. We also depict the image of the original

function, S(·;X,Wn), at a(1, 0), a(0, 1), a(−1, 0), and a(−1,−1), when a runs from 0 to 1.

22Intuitively speaking, a manifold is a subset of an Euclidean space which looks like an open subset of an
Euclidean space locally. Any open subsets of an Euclidean space is, of course a manifold. See Guillemin and
Pollack (1974) for a rigorous definition.
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Utlitizing the homotopy (C.2), we derive some properties of the set of equilibria, which are

summarized in Proposition 3.1. It is proved in detail below.

Proof of Proposition 3.1. The proof is composed of two parts. We first show the existence

of an equilibrium in the interior, B(0, r) and then prove finiteness. (1) Under Assumption 3.1,

when the positive number r is sufficiently large, for any ξ with ‖ξ‖E = r, we have that

‖S(ξ;X,Wn)‖E = ‖T (ξ;X,Wn)− ξ‖E ≥ |‖T (ξ;X,Wn)‖E − ‖ξ‖E | > 0.

Thus, S(ξ;X,Wn) 6= 0 on ∂B[0, r] and Ŝ(·;X,Wn) in (C.1) is well-defined on ∂B[0, r]. Similarly,

for any t ∈ [0, 1], ‖tT (ξ;X,Wn) − ξ‖E ≥ |‖tT (ξ;X,Wn)‖E − ‖ξ‖E | > 0. Thus, tHi(u(Xi) +

λ
∑

j 6=iWn,ijψj)− ψi 6= 0, for all t ∈ [0, 1], i = 1, · · · , n, and all ξ ∈ ∂B[0, r]. Therefore, we can

define a homotopy, R̃(·, ·;X,Wn) : ∂B[0, r]×[0, 1]→ S1 such that R̃(·, ·;X,Wn) = Rt(ξ;X,Wn),

which is defined in (C.2). R0(ξ;X,Wn) is a linear transformation from ∂B[0, r] to Sn−1 with

degree (−1)n 6= 0. Therefore, the degree of Ŝ(·;X,Wn) : ∂B[0, r]→ Sn−1 is equal to (−1)n 6= 0.

(2) If there is no solution to S(ξ;X,Wn) = 0 in the interior, B(0, r), Ŝ(·;X,Wn) can be extended

to the whole closed ball, B[0, r]. According to Guillemin and Pollack (1974), the degree of

Ŝ(·;X,Wn) on ∂B[0, r] is equal to zero. That is a contradiction. Therefore, there must be at

least one point ξe ∈ IntB[0, r] such that S(ξe;X,Wn) = 0. (3) For any group (X,Wn), the set

of equilibria, E(X,Wn) is the zeros for the continuous function, S(·;X,Wn). Therefore, it is

closed. As a closed subset of the closed ball B[0, r], E(X,Wn) is compact. Given regularity, for

any ξe ∈ B[0, r], det(DS(ξ;X,Wn) 6= 0. By the Inverse Function theorem, S(·;X,Wn) is a local

diffeomorphism around ξ. Thus, there is an open neighborhood, O(ξe) ∈ B[0, r] for ξe such that

O(ξe) ∩ E(X,Wn) = {ξe}. Then the relative open sets, {O(ξe) ∩ E(X,Wn)} is an open cover

for E(X,Wn). By compactness, there is a finite subcover. That is, there is an integer, K, such

that E(X,Wn) ⊆ ∪Kk=1O(ξek)∩E(X,Wn). Because each O(ξek)∩E(X,Wn) = {ξek} is a singleton,

E(X,Wn) contains just a finite number of points, ξe1, · · · , ξeK .

Proof of Proposition 3.2. Pick B[0, r] according to Proposition 3.1, define a function

R̂(·, ·;X,Wn) : B(0, r)× [0, 1]→ <n, such that for all t ∈ [0, 1], i = 1, · · · , n, and ξ ∈ <n,

R̂(ξ, t;X,Wn)i = tHi(u(Xi) + λ
∑
j 6=i

Wn,ijξj)− ξi.

We do not lose any zeros of S(·;X,Wn), for there is no zeros for this homotopy on the boundary

∂B[0, r]. We can see R̂1(ξ;X,Wn) = R̂(ξ, 1;X,Wn) is the restriction of S(·;X,Wn) in B(0, r).
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R̂0(ξ;X,Wn) = R̂(ξ, 0;X,Wn) is just a linear transformation with R̂0(ξ;X,Wn)i = −ψi for all

i = 1, · · · , n. The restriction, S(·;X,Wn) : B(0, r)→ <n is homotopic to R̂0(·;X,Wn). By the

Sard’s theorem, pick a point b ∈ <n, such that b is a regular value of R̂. Since R̂−1(b) is a

closed set in B(0, r) ⊆ B[0, r], it is compact. Due to transversality, F̂−1(b) is a one-dimension

compact submanifold in B(0, r). Therefore, the sum of the orientation numbers at points in

∂R̂−1(b) is zero. Since the boundary, ∂(B(0, r)× [0, 1]) = (B(0, r)× {0}) ∪ (B(0, r)× {1}, ∂R̂

is equal to R̂0 on B(0, r)×{0} and R̂1 on B(0, r)×{1}. Therefore, the intersection numbers of

those three functions at {b} satisfy the following relation:

I(∂R̂, {b}) = I(R̂1, {b})− I(R̂0, {b}).

That is, the two homotopic maps, R̂0(·;X,Wn) and R̂1(·;X,Wn), have the same intersection

numbers at {b}. According to Guillemin and Pollack (1974), since <n is connected and has the

same dimension with B(0, r) ∈ <n, the intersection number is invariant with the point picked

and is defined as the degree of a function. Therefore, choose point {0}, we get that

deg(R̂1) = I(R̂1, {0}) = I(R̂0, {0}) = deg(R̂0).

Since R̂−1
0 ({0}) = {0} and det(DR̂0) = (−1)n, we get that the degree of R̂0 is also (−1)n, which

is equal to +1 when n is even and is equal to −1 when n is odd. Since 0 is a regular value for

R̂1 which is the restriction of S(·;X,Wn) on B(0, r), deg(R̂1) = I(R̂1, {0}) is actually the sum

of orientation numbers for points in S−1(·;X,Wn), which are model equilibrium expectations.

Because the orientation numbers of those points are by definition either +1 or −1, if their sum

is either +1 or −1, there must be an odd number of such points. In that case, the equilibria

with orientation number +1 (−1) outnumbers the equilibria with orientation number −1 by

exactly 1. In addition, if the sign of det(DS(·;X,Wn)) does not change in B(0, r), all the

equilibria will have the same orientation numbers, either +1 or −1. If there are more than

one equilibria, the absolute value of their sum will be bigger than 1, which contradicts with

deg(R̂1(·;X,Wn) = (−1)n. Therefore, in that case, there is a unique equilibrium.
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Proof of Lemma 3.1. By calculation,

DS(ξ;X,Wn) = λ∆HW − In = λ



dH1(a1)
da 0 · · · 0

0 dH2(a2)
da · · · 0

...
...

. . .
...

0 0 · · · dHn(an)
da


W − In,

where ai = u(Xi) + λ
∑

j 6=iWn,ijξ
e
j for i = 1, · · · , n, and In is the n-dimension identity matrix.

DS(ξ;X,Wn) is an n×n matrix with all diagonal elements equal to −1, i.e., DS(ξ;X,Wn)i,i =

−1. All of its off-diagonal elements are equal to their counterparts in λ∆HW , i.e, DS(ξ;X,Wn)i,j =

(λ∆HW )i,j . By the Gershgorin circle theorem, every eigenvalue of DS(ξ;X,Wn) lies within

one of the discs, B[−1, |λ||dHi(ai)/da|
∑

j 6=iWi,j ], for i = 1, · · · , n.23 Those circles are all

centered at −1. By (2.12), all of their radii are strictly less than 1. Therefore, every real

eigenvalues of DS(ξ;X,Wn) is strictly negative. Since the trace of DS(ξ;X,Wn) is real, if

τ is one of DS(ξ;X,Wn)’s eigenvalues, so be its conjugate. But their product is ττ > 0.

Let 2k denote the number of complex eigenvalues. The sign of the product of all eigenval-

ues, which is equal to the sign of the determinant, is equal to (−1)n−2k = (−1)n. Therefore,

sgn(det(DS(ξ;X,Wn))) = (−1)n for all ξ ∈ <n.

D Proofs for Identification with Public Characteristics

Proof of Proposition 3.3. With public information on all exogenous covariates, simply

denote (Xg, Xc) = X. By calculation, E[Y |X] = E[(In−λWn)−1Xβ|X]. Therefore, if (β, λ, σ)

and (β̃, λ̃, σ̃) are observationally equivalent,

E[(In − λWn)−1Xβ − (In − λ̃Wn)−1Xβ̃|X] = 0.

for any X in its support. Multiply both sides by the non-random matrix, (In−λWn)(In−λ̃Wn).

Notice that (In − λWn)(In − λ̃Wn) = (In − λ̃Wn)(In − λWn), we have that

E[(In − λ̃Wn)Xβ − (In − λWn)Xβ̃|X] = 0.

23Let A = (aij) be an n × n matrix. Denote by Ri =
∑
j 6=i |ai,j | the sum of absolute values of off-diagonal

elements in the i-th row. Denote the closed disc centered at aii with a radius Ri by B[aii, Ri]. By the Gershgorin
circle theorem, every eigenvalue of A lies within one of those closed discs, B[aii, Ri], for i = 1, · · · , n. A brief
explanation and proof for this theorem can be found at http://en.wikipedia.org.
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Denote by ln the n× 1 vector of 1’s,

E
[(

ln Wnln Xc WnX
c

)(
β0,0 − β̃0,0 λβ̃0,0 − λ̃β0,0 β

′
1 − β̃

′
1 λβ̃

′
1 − λ̃β

′
1

)′
|X
]

= 0,

which is equivalent to

E
[(

ln Wnln Xc WnX
c

)′ (
ln Wnln Xc WnX

c

)
|X
]

(
β0,0 − β̃0,0 λβ̃0,0 − λ̃β0,0 β

′
1 − β̃

′
1 λβ̃

′
1 − λ̃β

′
1

)′
= 0.

Taking expectations over X, we get that

E
[(

ln Wnln Xc WnX
c

)′ (
ln Wnln Xc WnX

c

)]
(
β0,0 − β̃0,0 λβ̃0,0 − λ̃β0,0 β

′
1 − β̃

′
1 λβ̃

′
1 − λ̃β

′
1

)′
= 0.

Under assumption (3.12), E
[(

ln Wnln Xc WnX
c

)′ (
ln Wnln Xc WnX

c

)]
is posi-

tive definite. Then

(
β0,0 − β̃0,0 λβ̃0,0 − λ̃β0,0 β

′
1 − β̃

′
1 λβ̃

′
1 − λ̃β

′
1

)′
implies that β = β̃ and

λ = λ̃. If Wn is row-normalized, Wnln = ln. Then observationally equivalence implies that

E
[(

ln Xc WnX
c

)′ (
ln Xc WnX

c

)]
(
β0,0 − β̃0,0 + λβ̃0,0 − λ̃β0,0 β

′
1 − β̃

′
1 λβ̃

′
1 − λ̃β

′
1

)′
= 0.

If (3.12′) holds, we will also have β = β̃ and λ = λ̃. If Wn is row-normalized, Wnln = ln.

Because E[(Y − E[Y |X])(Y − E[Y |X])
′ |X] = σ2In. We can identify σ through conditional

variance of yi’s given X.

Proof of Lemma 3.2. Without loss of generality, suppose that β1,1 > 0. For ω−i ∈ {0, 1}n−1,

choose X (ω)c as

X (ω)c =
{
Xc ∈ <nL : Xc

j,1(2ωj − 1) ≥ 0, j 6= i
}
.

We can see that for any j 6= i, as |Xc
j,1| → ∞ in X c(ω) ⊆ <nL, with the restriction, Xc

j,1(2ωj −

1) ≥ 0, u(Xj) goes to +∞ when ωj is 1; and u(Xj) goes to −∞ when ωj is 0. Therefore,

lim|Xc
j,1|→∞,j 6=i,Xc∈X c(ω) P (y−i = ω|Xc) = 1. Since all Xc

i ’s have full support, P (Xc ∈ X c(ω)) >

0.
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Proof of Proposition 3.4. By Lemma 3.2,

lim
|Xc
j,1|→∞,j 6=i,Xc∈X c(ω0)−i

P (β0,0 +Xc′
i β1 + λ

∑
j 6=i

Wn,ijψj − εi > 0|Xc)

= lim
|Xc
j,1|→∞,j 6=i,Xc∈X c(ω0)−i

P (β0,0 +Xc′
i β1 + λ

∑
j 6=i

Wn,ijω0,j − εi > 0|Xc).

Therefore,

lim
|Xc
j,1|→∞,j 6=i,Xc∈X c(ω0)

logP (yi, ω0|Xc)

= lim
|Xc
j,1|→∞,j 6=i,Xc∈X c(ω0)

yi logFε(β0,0 +Xc′
i β1 + λ

∑
j 6=i

Wn,ijω0,j)

+ (1− yi) log(1− Fε(β0,0 +Xc′
i β1 + λ

∑
j 6=i

Wn,ijω0,j)).

Under condition (3.13), when Xc ∈ X c(ω0) and |Xc
j,1| ≥ D, for all i 6= j,

E[(∂ logP (yi, ω0|Xc)/∂θ)(∂ logP (yi, ω0|Xc)/∂θ)
′ |Xc ∈ X c(ω0), |Xc

j,1| ≥ D, i 6= j]

is positive definite. From Rothenberg(1971), θ = (β
′
, λ)

′
can be identified.

Proof of Lemma 3.3. Similar to the proof of Lemma3.2, choose

X c1 =
{
Xc ∈ <nL : Xc

j,1 ≥ 0, 1 ≤ j ≤ n
}
.

In this set, as ‖Xc
i,1‖E → ∞, Xc

i,1β1,1 → +∞. As u(Xi) = β0,0 + Xc′
i β1 → +∞, in the limit,

none outcomes are censored.

Proof of Proposition 3.5. It follows from Lemma3.3 that in X c1 , as |Xc
i,1| → ∞ in this set,

no choices are censored. Therefore, for the distribution of observed outcomes we have that

lim
|Xc
j,1|→∞,1≤j≤n,Xc∈X c1

f(Y |Xc) = lim
|Xc
j,1|→∞,1≤j≤n,Xc∈X c1

f(Y ∗|Xc).

That is, in the limit, the observed outcomes are the latent variables which are associated

with each other just as continuous choices in linear models. Since E[|yi||Xc] = Hi(u(Xi) +

λ
∑

j 6=iWn,ijξ
e
j ) < ∞ and E[|y∗i ||Xc] = E[yi|Xc], by the Lebesgue Control convergence theo-

rem,

lim
|Xc
j,1|→∞,1≤j≤n,Xc∈X c1

E[Y |Xc] = lim
|Xc
j,1|→∞,1≤j≤n,Xc∈X c1

E[Y ∗|Xc]

= lim
|Xc
j,1|→∞,1≤j≤n,Xc∈X c1

(In − λWn)−1(β0,0ln +Xcβ1).
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Thus, if (β, λ, σ) and (β̃, λ̃, σ̃) are observationally equivalent,

lim
|Xc
j,1|→∞,1≤j≤n,Xc∈X c1

E
[(

ln Wnln Xc WnX
c

)
(
β0,0 − β̃0,0 λβ̃0,0 − λ̃β0,0 β

′
1 − β̃

′
1 λβ̃

′
1 − λ̃β

′
1

)′
|Xc
]

= 0,

for all Xc ∈ X c1 . Similar to the proof of Proposition 3.3, we derive that

lim
|Xc
j,1|→∞,1≤j≤n,Xc∈X c1

E
[(

ln Wnln Xc WnX
c

)′ (
ln Wnln Xc WnX

c

)]
(
β0,0 − β̃0,0 λβ̃0,0 − λ̃β0,0 β

′
1 − β̃

′
1 λβ̃

′
1 − λ̃β

′
1

)′
= 0.

Under (3.15), there is a positive-measure subset of covariates such that

E
[(

ln Wnln Xc WnX
c

)′ (
ln Wnln Xc WnX

c

)]
is positive definite. Therefore, (β, λ) = (β̃, λ̃). Identification of σ follows from Yang, Qu, and

Lee (2016).

Proof of Proposition 3.6. For a group (X,Wn), the sample log likelihood can be written as

log
∑

ξe ρ(α, ξe)f(Y |ξe).

By calculation, we get that

E[
∂ logL(Y |Xc,Wn)

∂α

∂ logL(Y |Xc,Wn)

∂α′
|Xc]

=E[(
1∑

ξe ρ(ξe;E(X,Wn), α)f(Y |ξe)
)4(

1∑
ξe exp(α′γ(ξe;X,Wn))

)2

(
1∑

ξe exp(α′γ(ξe;X,Wn)f(Y |ξe))
)2Γ

′
(Xc,Wn;β, σ, λ)(D(X,Wn))2Γ(Xc,Wn;β, σ, λ)|Xc].

When there are M equilibria, D(X,Wn) is a M ×M diagonal matrix. Its (m,m) element is

exp(α
′
γ(ξe;X,Wn))f(y|ξe)∑

ξ̃e
exp(α′γ(ξ̃e;X,Wn))f(y|ξ̃e)

− exp(α
′
γ(ξe;X,Wn))∑

ξ̃e
exp(α′γ(ξ̃e;X,Wn))

. We can see that as long as there are multiple

equilibria, D(X,Wn) is positive definite. If E[Γ
′
(Xc,Wn;β, σ, λ)Γ(Xc,Wn;β, σ, λ)|Xc] has full

column rank, so does E[∂ logL(Y |Xc,Wn)
∂α

∂ logL(Y |Xc,Wn)

∂α′
|Xc]. From Rothenberg(1971), α can be

identified.

E Equilibrium with Privately Known Characteristics

In this section, we discuss the existence and property of equilibria when some exogenous charac-

teristics are private information. The case in Section 4 is one special case. In the Banach space,

(Ξ(Wn,J ), ‖ · ‖). define an operator, T : Ξ(Wn,J )→ Ξ(Wn,J ), such that for all i = 1, · · · , n
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and m = 1, · · · ,Mi,

T (ξ)(xp
J̃1,1

, · · · , xp
J̃1,M1

, · · · , xp
J̃n,1

, · · · , xp
J̃n,Mn

)i,m = E[Hi(u(Xi) + λ
∑
j 6=i

Wn,ijξj,Ji(X
p
Ji

))|xp
J̃i,m

, z]. (E.1)

An equilibrium conditional expectation function, ξe, corresponds to one of T ’s fixed points.

To apply the Schauder fixed point theorem (Proposition E.4), we need to capture a compact

set in the function space, (Ξ(Wn,J ), ‖ · ‖). Analogous to conventional discussions on Banach

spaces, we focus on a weaker condition, relative compactness.

Definition E.1 A set in a metric space is relatively compact if its closure is compact.

Simon (1987) introduces a property about relative compact sets, which is used for our proof.

it is cited as the lemma below.

Lemma E.1 A set V is a normed space U is relatively compact if and only if for any η > 0,

there are a finite subset {v1, · · · , vL} ⊆ V such that for any v ∈ V , there is vi for some

i = 1, · · · , n with ‖v − vi‖U < η.

Thus, as long as we find a set which is relatively compact, all of its own points and its limit

points form a new set which is compact. Because ξ ∈ (Ξ(Wn,J ), ‖ · ‖) if and only if each of its

coordinate functions, ξi,m is a function in the Lebesgue space, L1(Xpi,m,Bi,m, µp;<1), we may

utilize the properties of a relatively compact set in L1(Xpi,m,Bi,m, µp;<1). That is possible due

to the following lemma.

Lemma E.2 Γ0 is a relatively compact subset of (Ξ(Wn,J ), ‖ · ‖) if and only if

Γ0,i,m =
{
ξi,m : Xpi,m → <1 : (ξi,m, ξ−im) ∈ Γ0 for some ξ−im :

∏
(i′ ,m′ )6=(i,m) X

p

i′ ,m′
→ <M−1

}
is relatively compact in L1(Xi,m,Bi,m, µp;<1) for all i = 1, · · · , n, m = 1, · · · ,Mi.

Proof. Suppose that Γ0,i,m is relatively compact in L1(Xpi,m,Bi,m, µp;<1) for each (i,m). By

Lemma E.1, for an arbitrarily chosen η > 0, for any (i,m), there is (ξi,m,1, · · · , ξi,m,Li,m) in

Γ0,i,m, such that for any ξi,m ∈ Γ0,i,m, there is ξi,m,l for some 1 ≤ l ≤ Li,m with ‖ξi − ξi,l‖1 < η.

Construct a finite subset of Γ0 as

Γ0b = {(ξ1,1,l1 , · · · , ξn,mn,ln) : 1 ≤ li ≤ Li,m for all i = 1, · · · , n,m = 1, · · · ,Mi}.

Then for any ξ = (ξ1,1, · · · , ξn,Mn) ∈ Γ0, for each (i,m), pick li,m such that ‖ξi,m − ξi,m,li,m‖1 =∫
|ξi,m − ξi,m,li,m |dµp < η. Denoting ξb = (ξ1,1,l1,1 , · · · , ξn,Mn,ln,Mn

) ∈ Γ0b, we have that ‖ξ −
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ξb‖ = max1≤i≤n max1≤m≤Mi ‖ξi,m − ξi,m,li,m‖1 < η. Therefore, Γ0 is relatively compact in

(Ξ(Wn,J ), ‖ · ‖). On the contrary, suppose that Γ0 is relatively compact in (Ξ(Wn,J ), ‖ · ‖). If

for some (i0,m0), Γ0,i0,m0 is not relatively compact in L1(Xpi0,m0
,Bi0,m0 , µp;<1), there is η0 > 0,

such that for any finite subset of Γ0,i0,m0 ,
{
ξi0,m0,1, · · · , ξi0,m0,Li0,m0

}
, there is ξ∗i0,m0

∈ Γ0,i0,m0

with ‖ξ∗i0,m0
− ξi0,m0,l‖1 > η for all 1 ≤ l ≤ Li0,m0 . For any finite subset of Γ0,

{
ξ1, · · · , ξL

}
,{

ξ1
i0,m0

, · · · , ξLi0,m0

}
is a finite subset of Γ0,i0,m0 . Take ξ∗ = (ξ∗i0,m0

, ξ−i0m0) ∈ Γ0. We have that

‖ξ∗ − ξl‖ ≥ ‖ξ∗i0,m0
− ξli0,m0

‖1 > η0, contradicting with Γ0 being relatively compact. Therefore,

each Γ0,i,m is relatively compact in L1(Xpi,m,Bi,m, µp;<1) for all (i,m).

Owing to Lemma E.2, to characterize relatively compact sets in (Ξ(Wn,J ), ‖ · ‖), we need

to capture the relatively compact sets in the Lebesgue space L1(X
J̃i,m

,Σi,m, µp;<1). There are

some characterizations for Lebesgue spaces of functions whose domains are general measurable

spaces and ranges are Banach spaces, such as the results by Brooks and Dinculeanu(1979) and

more recently, the Diaz-Mayoral Theorem (See van Neerven(2014) for an elementary proof).

Here, we apply the classical results by Dunford and Schwartz(1958).

If Ω = <1, BR is the Borel σ-algebra, µ is the Lebesgue measure, m, and Y is a Banach

space with norm ‖ · ‖Y . Dunford and Schwartz (1958) have a characterization for a relatively

compact set in the Lebesgue space, Lq(<1,BR,m;Y), the space consisting of mappings from

<1 to Y, integrable under m, with the Lq norm.

Proposition E.1 For 1 ≤ q <∞, Υ0 ⊆ Lq(<1,BR,m;Y) is relatively compact if and only if:

1. It is bounded, i.e., supχ∈Υ0
(
∫ +∞
−∞ ‖χ(t)‖qY dt)1/q < U for some U > 0;

2.
∫ +∞
−∞ ‖χ(t+ s)− χ(t)‖qY dt→ 0 as s→ 0 uniformly for all χ ∈ Υ0; and

3. (
∫ +∞
r +

∫ −r
−∞)‖χ(t)‖qY dt→ 0 as r →∞ uniformly for all χ ∈ Υ0.

For Ω = [a, b], (1) and (2) and necessary and sufficient conditions for relative compactness.

Proof. See Dunford and Schwartz(1958) Theorem IV.8.20 (pp.298).

The results above can be extended to the n-dimension Euclidean space.

Proposition E.2 For 1 ≤ q <∞, Υ0 ⊆ Lq(<n,B,m;Y) is relatively compact if and only if:

1. It is bounded, i.e., supχ∈Υ0
(
∫
<n ‖χ(t)‖qY dt)1/q < U for some U > 0;
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2.
∫ +∞
−∞ · · ·

∫ +∞
−∞ ‖χ(t1 + s1, · · · , tn + sn)− χ(t1, · · · , tn)|qY dt1 · · · dtn → 0,

as s = (s1, · · · , sn)→ 0 uniformly for all χ ∈ Υ0; and

3.
∫
<n−Cr ‖χ(t)‖qY dt→ 0 as r →∞ uniformly for all χ ∈ Υ0, where the cube

Cr = {t = (t1, · · · , tn) ∈ <n : −r ≤ ti ≤ r ∀i = 1, · · · , n}.

If Ω =
∏n
i=1[ai, bi], (1) and (2) are necessary and sufficient for relative compactness.

Proof. See Dunford and Schwartz(1958) Theorem IV.8.21 (pp.301).

Although those results are very general, they are about Lebesgue measure. In our model,

particularly, each coordinate function ξi for ξ ∈ Ξ is defined on a subset of the Euclidean space

with the probability measure, µp, which is induced by the distribution of Xp
i ’s conditional on the

public information Z = z. We show that when there is a pdf for this conditional distribution,

we can apply Proposition E.1 and Proposition E.2.

Lemma E.3 Let Ω be a subset of <n. When µ << m, dµ/dm = f is a strictly positive on

Ω, Υ0 ∈ L1(Ω,BΩ, µ;Y) is relatively compact if and only if fΥ0 = {fχ : χ ∈ Υ0} is relatively

compact in L1(Ω,ΣB,m;B).

Proof. On one hand, if fΥ0 is relatively compact in L1(Ω,ΣB,m;B), by Lemma E.1, for

any η > 0, there are a finite subset,
{
χ1, · · · , χK

}
in L1(Ω,BΩ,m;Y), such that for any

χ ∈ L1(Ω,BΩ,m;Y), there is χk in that finite set with
∫

Ω ‖χ−χ
k‖Y dm < η.

{
χ1/f, · · · , χK/f

}
is a finite subset of L1(Ω,BΩ, µ;Y). For any χ̃ ∈ Υ0, fχ̃ ∈ fΥ0. Therefore,

∫
Ω ‖fχ̃ −

χl‖Y dm =
∫

Ω ‖χ̃ − χl/f‖Y fdm =
∫

Ω ‖χ̃ − χl/f‖Y dµ < η. Therefore, Υ0 is relatively com-

pact in L1(Ω,BΩ, µ;Y). On the other hand, if Υ0 is relatively compact, for any η > 0,

there is a finite subset
{
χ̃1, · · · , χ̃K

}
such that for any χ̃ ∈ Υ0, there is a function χ̃k in

that finite subset such that
∫

Ω ‖χ̃ − χ̃k‖Y dµ < η. Note that
{
fχ̃1, · · · , f χ̃K

}
is a finite set

in L1(Ω,BΩ,m;Y). Take χ ∈ L1(Ω,BΩ,m;Y), χ/f ∈ L1(Ω,BΩ, µ;Y). Hence, we have that∫
Ω ‖χ− fχ̃

k‖Y dm =
∫

Ω ‖χ/f − χ̃
k‖Y fdm =

∫
Ω ‖χ/f − χ̃

k‖Y dµ < η. Therefore, fΥ0 is relatively

compact in L1(Ω,BΩ,m;Y).

Corollary E.1 Suppose that Ω =
∏n
i=1[ai, bi] for −∞ ≤ ai < bi ≤ +∞. µ << m. dµ/dm = f

is strictly positive on Ω. When |ai| <∞ and |bi| <∞ for all i = 1, · · · , n, Υ0 ∈ L1(Ω,BΩ, µ;Y)

is relatively compact if and only if:
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1. supχ∈Υ0

∫
Ω ‖χ(t)‖Bdt < U for some U > 0;

2.

∫ b1

a1

· · ·
∫ bn

an

|χ(t1 + s1, · · · , tn + sn)f(t1 + s1, · · · , tn + sn)− χ(t1, · · · , tn)f(t1, · · · , tn)|dt1 · · · dtn → 0,

as s = (s1, · · · , sn)→ 0, uniformly for all χ ∈ Υ0.

When |ai| = ∞ for some i or |bj | = ∞ for some j, the necessary and sufficient conditions for

Υ0 ∈ L1(Ω,BΩ, µ;Y) to be relatively compact include both (1) and (2), as well as (3):∫
ω−Cr ‖χ(t1, · · · , tn)‖Y f(t1, · · · , tn)dt1 · · · dtn → 0, as r → ∞ uniformly for all χ ∈ Υ0, where

the cube Cr = {t = (t1, · · · , tn) ∈ Ω : −r ≤ ti ≤ r ∀i = 1, · · · , n}.

Combining Lemma E.2 and Corollary E.1, we derive a characterization of a relatively com-

pact subset of (Ξ(Wn,J ), ‖ · ‖) using properties of functions.

Proposition E.3 Suppose that conditional on public information Z = z, the support of Xp
i ,

Xpi , is a cube in <kp (It can be bounded or unbounded), and the joint distribution of Xp
i ’s has a

pdf fp(·).

1. When all the Xpi ’s are bounded, Γ0 is relatively compact in (Ξ(Wn,J ), ‖ · ‖), if and only

if,

(a) (uniformly bounded) there is a real number B > 0 such that

supξ∈Γ0
‖ξ‖ = supξ∈Γ0

max1≤i≤n max1≤m≤Mi

∫
Xpi,m
|ξi,m(x)|fp(x)dx ≤ B;

(b) max1≤i≤n max1≤m≤Mi

∫
Xpi,m
|ξi,m(x + x̃)fp(x + x̃) − ξi,m(x)fp(x)|dx → 0 as x̃ → 0

uniformly for any ξ ∈ Γ0.

2. When some of the support is unbounded, the necessary and sufficient conditions for Γ0 to

be relatively compact in (Ξ(Wn,J ), ‖ · ‖) include (1) and (2) as well as (3):

max1≤i≤n max1≤m≤Mi

∫
Xpi,m−Cr,i,m

|ξi,m(x)|dx → 0 as r → ∞ uniformly for all ξ ∈ Υ0,

where the cube Cr,i,m =
{
x ∈ Xpi,m : |xj | ≤ r ∀j with Ji,m(j) = 1

}
.

Proof. (a) Suppose that Γ0 is relatively compact in (Ξ(Wn,J ), ‖ · ‖). Then for each i and m,

the set, Γ0,i,m = {ξi,m : (ξi,m, ξ−im) ∈ Γ0 for some ξ−im}
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is relatively compact in L1(Xpi,m,Bi,m, µp;<1) according to LemmaE.2. It follows from Corollary

E.1 that for any i and m, there is U i,m, such that supξi,mΓ0,i,m

∫
Xpi,m
|ξi(x)|fp(x)dx < U i,m.

Therefore,

sup
ξ∈Γ0

‖ξ‖ = sup
ξ∈Γ0

max
1≤i≤n

max
1≤m≤Mi

∫
Xpı,m

|ξi,m(x)|fp(x)dx

≤ max
1≤i≤n

max
1≤m≤Mi

U i,m

=U,

where U = max1≤i≤n max1≤m≤Mi U i,m < ∞. Additionally, for any η > 0, there is δi,m > 0,

such that
∫
Xpi,m
|ξ(x + x̃i,m)f(x + x̃i,m − ξ(x)f(x)|dx < η when ‖x̃i,m‖E < δi,m for all ξ ∈ Γ0.

Take δ = min 1 ≤ i ≤ nmax1≤m≤Mi δi,m > 0. For a vector

x̃ = (x̃1,1′ , · · · , x̃1,M ′1 , · · · , x̃n,1′ , · · · , x̃n,M ′n)
′
, when ‖x̃‖E < δ, ‖x̃i,m‖E < δi,m for all (i,m).

Then max1≤i≤n max1≤m≤Mi

∫
Xpi,m
|ξi,m(x + x̃i,m)f(x + x̃i,m) − ξi,m(x)f(x)|dx < η for all ξ ∈

Γ0. When some of the Xp
i ’s have an unbounded support, for any η > 0, there is Ri,m >

0, such that for all (i,m),
∫
Xpi,m−Cr,i,m

|χ(x)|dx < η for all r > R and all ξi,m. Take R =

max1≤i≤n max1≤m≤Mi Ri,m < +∞. Then when r > R,

max1≤i≤n max1≤m≤Mi

∫
Xpi,m−Cr,i,m

|ξi,m(x)|dx < η for all ξ ∈ Υ0.

(b) One the contrary, if (1) and (2) hold, suppose that there is (i0,m0), such that for any U > 0,

there is ξi0,m0 ∈ Γ0,i0,m0 , such that ‖ξi0,m0‖1 =
∫
Xpi0,m0

|ξi0,m0(x)|fp(x)dx > U . Then pick any

ξ−i0m0 ∈ Γ0,−i0m0 such that ξ = (ξi0,m0 , ξ−i0m0) ∈ Γ0. Then

‖ξ‖ = max1≤i≤n max1≤m≤Mi

∫
Xpi,m
|ξi,m(x)|fp(x)dx ≥

∫
Xpi0,m0

|ξi0,m0(x)|fp(x)dx > U ,

which is a contradiction. Therefore, every Γ0,i,m is uniformly bounded under the ‖ · ‖1 norm.

Similarly, suppose that there is some (i0,m0), with some ηi0,m0 > 0, for any δi0,m0 > 0, there is

x̃i0,m0 with ‖x̃i0‖E < δi0,m0 and ξi0,m0 ∈ Γ0,i0,m0 , such that
∫ b
a |ξi0,m0(x+ x̃i0,m0)fp(x+ x̃i0,m0)−

ξi0,m0(x)f(x)|dx > ηi0,m0 . Pick any ξ−i0m0 ∈ Γ0,−i0m0 such that ξ = (ξi0,m0 , ξ−i0m0) ∈ Γ0. Then

max1≤i≤n max1≤m≤Mi

∫
Xpi,m
|ξi,m(x + x̃i,m)fp(x + x̃i,m) − ξi,m(x)f(x)|dx ≥

∫
Xpi0,m0

|ξi0,m0(x +

x̃i0,m0)fp(x + x̃i0,m0)− ξi0,m0(x)f(x)|dx > η, which contradicts that Γ0 satisfies (2). Similarly,

suppose that there is some (i0,m0), with some ηi0,m0 > 0, for any R > 0, there is r > R, such

that
∫
Xpi0,m0

|ξi0,m0(x)|fp(x)dx > ηi0,m0 . Then max1≤i≤n max1≤m≤Mi

∫
Xpi,m−Cr,i,m

|ξi,m(x)|dx ≥∫
Xpi0,m0

|ξi0,m0(x)|fp(x)dx > η, which is also a contradiction. By Corollary E.1, each Γ0,i,m

is relatively compact in L1(Xp
J̃i,m

,Bi,m, µp;<1). It then follows from LemmaE.2 that Γ0 is
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relatively compact in (Ξ(Wn, J), ‖ · ‖).

The existence of an equilibrium is established by Schauder fixed point theorem, which is

cited below.

Proposition E.4 [Schauder fixed point theorem] Let K be a nonempty, closed, and convex

subset of a normed space. Let T be a continuous mapping from K into a compact subset of K.

Then T has a fixed point in K.

In order to apply this theorem to operator T defined in (E.1), we impose two assumptions,

Assumptions 4.2 and 4.3.

Lemma E.4 Under Assumption 4.2, T is continuous. Actually, it is a Lipschitz function.

Proof. For any ξ, ξ
′ ∈ (Ξ(Wn,J ), ‖ · ‖),

‖T (ξ)− T (ξ
′
)‖

= max
1≤i≤n

max
1≤m≤Mi

∫
E
[
Hi(u(Xi) + λ

∑
j 6=i

Wn,iξj,Ji(x
p
Ji

))−Hi(u(Xi) + λ
∑
j 6=i

Wn,iξ
′
j,Ji(x

p
Ji

))|xpi,m, z
]
dFp

≤ max
1≤i≤n

max
1≤m≤Mi

sup
c
|dHi(c)/dc||λ|

∑
6=i

Wn,ij

∫
E
[
|ξi,Ji(x

p
Ji

)− ξ
′
i,Ji(x

p
Ji

)|
∣∣∣xp
i,J̃i,m

, z
]
dFp

= max
1≤i≤n

max
1≤m≤Mi

sup
c
|dHi(c)/dc||λ|

∑
6=i

Wn,ij

∫
|ξi,Ji(x

p
Ji

)− ξ
′
i,Ji(x

p
Ji

)|dFp

≤ max
1≤i≤n

sup
c
|dHi(c)/dc||λ|‖Wn‖∞‖ξ − ξ

′
‖.

That is to say, T is a Lipschitz function. Thus, it is continuous in (Ξ(Wn,J ), ‖ · ‖).

Lemma E.5 Under Assumption 4.3, there is r0 > 0, such that there is no equilibria out of

the closed ball, B[0, r0] = {ξ ∈ (Ξ(Wn,J ), ‖ · ‖) : ‖ξ‖ ≤ r0}. In addition, for any ξ ∈ B[0, r0],

T (ξ) ∈ B[0, r0].

Proof. Because ‖T (ξ)− ξ‖ ≥
∣∣‖T (ξ)‖ − ‖ξ‖

∣∣, under Assumption 4.3, there is r1 > 0, such that

‖T (ξ) − ξ‖ > 0 for all ξ with ‖ξ‖ > r1. Now we show that there is r2 > 0, such that for any

r ≥ r2, T (B[0, r]) ⊆ B[0, r]. If this statement does not hold, for any positive r, there is r∗ ≥ r

and ξr∗ with ‖ξr∗‖ ≤ r∗, ‖T (ξr∗)‖ > r∗ ≥ ‖ξr∗‖. Then ‖T (ξr∗)‖/‖ξr∗‖ > 1, which contradicts

Assumption 4.3. Choose r0 = max {r1, r2}, we get the results.
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Proposition E.5 Under Assumptions 4.2 and 4.3, if in addition,

max
1≤i≤n

max
1≤m≤Mi

∫
Xp
|T (ξ)i,m(x+ x̃)fp(x+ x̃)− T (ξ)i,m(x)fp(x)|dx→ 0, (E.2)

as x̃→ 0, uniformly for any ξ ∈ B[0, r0]; and

max
1≤i≤n

max
1≤m≤Mi

∫
Xp−Cr

|T (ξ)i,m(x)|fp(x)dx→ 0, (E.3)

as r → ∞, uniformly for all ξ ∈ B[0, r0], the set of equilibria, E(X,Wn) is a nonempty and

compact subset of (Ξ(Wn,J ), ‖ · ‖) and is contiained in the closed ball B[0, r0]. In particular,

(E.2) and (E.3) are satisfied, if

1. Hi(·)’s are uniformly bounded, i.e., max1≤i≤n supa∈<1 |Hi(a)| ≤ B
′
, for some B

′
;

2. E[Xp
i |Z = z] <∞, for all i; and

3. For some δ0 > 0, for each (i,m), there is an function gi,m(x, x̂) such that∫
Xpi,m

∫
XpJi
|gi,m(x, x̂)|dxdx̂ < ∞, |fp,i,m(x + x̃, x̂)| ≤ gi,m(x, x̂), a.e., for any x̃ in the cube

Cδ0, where fp,i,m(·, ·) is the joint density of Xp
i,m = Xp

Ji,m
and Xp

Ji
conditional on public

information Z = z.24

Proof. Choose the closed ball B[0, r0] satisfying the properties stated in Lemma E.5. It is

nonempty, closed, and convex in space (Ξ(Wn,J ), ‖ · ‖). For any ξ
′ ∈ T (B[0, r0]), ξ

′
= T (ξ),

for some ξ ∈ B[0, r0]. Therefore,

max
1≤i≤n

max
1≤m≤Mi

∫
Xp
|ξ′i,m(x+ x̃)fp(x+ x̃)− ξ′i,m(x)fp(x)|dx

= max
1≤i≤n

max
1≤m≤Mi

∫
Xp
|T (ξ)i,m(x+ x̃)fp(x+ x̃)− T (ξ)i,m(x)fp(x)|dx;

max
1≤i≤n

max
1≤m≤Mi

∫
Xp−Cr

|ξ′i,m(x)|fp(x)dx = max
1≤i≤n

max
1≤m≤Mi

∫
Xp−Cr

|T (ξ)i,m(x)|fp(x)dx.

Therefore, if (E.2) and (E.3) are satisfied, according to Proposition E.3, T (B[0, r0]) is relatively

compact in the normed space (Ξ(Wn,J ), ‖ · ‖). Its closure, T (B[0, r0]), is compact. Moreover,

T (B[0, r0]) ⊆ B[0, r0], for B[0, r0] is closed. By the Schauder fixed point, T has a fixed point

in B[0, r0]. Thus, the set of equilibria, E(X,Wn), is nonempty. Since it is the set of fixed

points for the continuous operator T , E(X,Wn) is closed. As a closed subset of the compact set

T (B[0, r0]), E(X,Wn) is compact.

24It is possible that they have overlaps between Xp
i,m and Xp

Ji
. For example, both agent 1 and agent 2 know

Xp
3 . We write fp,i,m(x, y) in order to simplify notations.
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In particular, if Hi(·)’s are uniformly bounded,

max
1≤i≤n

max
1≤m≤Mi

∫
Xpi,m

∣∣T (ξ)i,m(x+ x̃)fp(x+ x̃)− T (ξ)i,m(x)fp(x)
∣∣dx

= max
1≤i≤n

max
1≤m≤Mi

∫
Xpi,m

∣∣E[Hi(u(Xg, Xc
i , x̂) + λ

∑
j 6=i

Wn,ijξj(x̂))|x+ x̃, z]fp(x+ x̃)

− E[Hi(u(Xg, Xc
i , x̂) + λ

∑
j 6=i

Wn,ijξj(x̂))|x, z]fp(x)
∣∣dx

= max
1≤i≤n

max
1≤m≤Mi

∫
Xpi,m

∣∣ ∫
XpJi

Hi(u(Xg, Xc
i , x̂) + λ

∑
j 6=i

Wn,ijξj(x̂))(fp(x+ x̃, x̂)− fp(x, x̂))dx̂|dx

≤ max
1≤i≤n

max
1≤m≤Mi

sup
a∈<1

|Hi(a)|
∫
Xpi,m

∫
XpJi

|fp(x+ x̃, x̂)− fp(x, x̂))|dx̂dx,

which, following from the Lebesgue dominated convergence theorem, goes to 0 uniformly for all

ξ’s as x̃→ 0, under the above distribution assumption. Similarly, for any r > 0,

max
1≤i≤n

max
1≤m≤Mi

∫
Xp−Cr

|T (ξ)i,m(x)|fp(x)dx

= max
1≤i≤n

max
1≤m≤Mi

∫
Xp−Cr

|
∫
XpJi

Hi(u(Xg, Xc
i , x̂) + λ

∑
j 6=i

Wn,ijξj(y))fp(x̂|x)dx̂|fp(x)dx

≤ max
1≤i≤n

max
1≤m≤Mi

sup
a∈<1

|Hi(a)|
∫
Xp−Cr

fp(x)dx

≤ max
1≤i≤n

max
1≤m≤Mi

sup
a∈<1

|Hi(a)|
∑

j:Ji,m(j)=1

P (|Xp
j | > r)

≤ max
1≤i≤n

max
1≤m≤Mi

sup
a∈<1

|Hi(a)|
∑

j:Ji,m(j)=1

E[|Xp
j |
∣∣z]/r,

(E.4)

where the last inequality follows from the Chebyshev’s inequality. As r →∞, the above formula

goes to zero uniformly for all ξ.

It is obvious that if Xp
i ’s have a bounded support and their joint density conditional on

public information is continuous, |fp,i,m(x + x̃, y)| can be dominated by the constant function

on the support, which is Lebesgue integrable. Now we show that we can dominate the density

for jointly normal random vectors.

Lemma E.6 Suppose that (X
′
1, X

′
2)
′

are jointly normal with mean (µ
′
1, µ

′
2)
′

and variance-

covariance matrix,

Σ =

Σ11 Σ12

Σ21 Σ22

 .
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Take δ0 > 0 arbitrarily. Then there is a function g : <k1×<k2 → <1, such that the joint density

f(x+ x̃, x̂) ≤ g(x, x̂) a.e. for any x̃ ∈ Cδ0.

Proof. Denote the inverse of Σ by

Σ−1 =

Σ̃11 Σ̃12

Σ̃21 Σ̃22

 .

The joint density takes the following form:

f(x+ x̃, x̂)

=(2π)−(k1+k2)/2(det(Σ))−1/2 exp
{
−(1/2)(x

′
+ x̃

′ − µ′1, x̂
′ − µ′2)Σ−1(x+ x̂− µ1, x̂− µ2)

}
=(2π)−(k1+k2)/2(det(Σ))−1/2 exp

{
−(1/2)(x̂− µ2)

′
(Σ̃22 − Σ̃21Σ̃−1

11 Σ̃12)(x̂− µ2)
}

· exp
{
−(1/2)(x̃+ (x− µ1) + Σ̃

−1/2
11 Σ̃12(x̂− µ2))

′
Σ̃11(x̃+ (x− µ1) + Σ̃

−1/2
11 Σ̃12(x̂− µ2))

}
.

For any (x, x̂), since the cube Cδ0 is compact in an Euclidean space, we can define

g̃(x, x̂) = minx̃∈Cδ0 (x̃ + (x − µ1) + Σ̃
−1/2
11 Σ̃12(x̂ − µ2))

′
Σ̃11(x̃ + (x − µ1) + Σ̃

−1/2
11 Σ̃12(x̂ − µ2)).

This function is defined on the basis of an optimization problem about a quadratic form with

respect to linear constraints. For any c ≥ 0, define the lower contour set,

L(c, x, x̂) =
{
x̃ : (x̃+ (x− µ1) + Σ̃

−1/2
11 Σ̃12(x̂− µ2))

′
Σ̃11(x̃+ (x− µ1) + Σ̃

−1/2
11 Σ̃12(x̂− µ2)) ≤ c

}
.

Each of those sets is an aera composed of an ellipse and its interior. It is convex. Fixing

(x, x̂), we either have a solution inside Cδ0 , −(x− µ1)− Σ̃
−1/2
11 Σ̃12(x̂− µ2), or a corner solution

at a boundary point of the cube Cδ0 . In the space for x̃, fixing c, when (x, x̂) varies, the center

of the ellipse moves; while the axes do not change. Therefore, we can divide the space for (x, x̂)

into several regions, such that two points in the same region either both have interior solutions

or corner solutions on the same edge of Cδ0 .25 If −(x−µ1)−Σ̃
−1/2
11 Σ̃12(x̂−µ2) ∈ Cδ0 , g̃(x, x̂) = 0.

Otherwise, its value depends on the minimal boundary point. In this case, as the edges of Cδ0

are bounded, for any x̃ on the boundary of Cδ0 ,∣∣∣(x̃+ (x− µ1) + Σ̃
−1/2
11 Σ̃12(x̂− µ2))

′
Σ̃11(x̃+ (x− µ1) + Σ̃

−1/2
11 Σ̃12(x̂− µ2))

− ((x− µ1) + Σ̃
−1/2
11 Σ̃12(x̂− µ2))

′
Σ̃11((x− µ1) + Σ̃

−1/2
11 Σ̃12(x̂− µ2))

∣∣∣/‖(x, x̂)‖2E → 0

25This can be seen clearly for the special case when k1 = k2 = 1. In that case, for any (x, x̂), if −(x − µ1) −
Σ̃
−1/2
11 Σ̃12(x̂ − µ2) < −δ0, the minimizing solution is −δ0; if −δ0 ≤ −(x − µ1) − Σ̃

−1/2
11 Σ̃12(x̂ − µ2) ≤ δ0, the

minimizing solution is interior; if −(x− µ1)− Σ̃
−1/2
11 Σ̃12(x̂− µ2) > δ0, the minimizing solution is δ0.
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as ‖(x, x̂)‖E →∞. Therefore, there is R > 0, such that when ‖(x, x̂)‖E > R,

g̃(x, x̂) ≥ (1/4)((x− µ1) + Σ̃
−1/2
11 Σ̃12(x̂− µ2))

′
Σ̃11((x− µ1) + Σ̃

−1/2
11 Σ̃12(x̂− µ2)).

Define g(x, x̂) = (2π)−(k1+k2)/2(det(Σ))−1/2 exp {−(1/2)g̃(x, x̂)}. Then f(x + x̃, x̂) ≤ g(x, x̂),

for any (x, x̂). By the Maximum Theorem, g̃(x, x̂) is continuous, so does g(x, x̂). Moreover, if

−(x− µ1)− Σ̃
−1/2
11 Σ̃12(x̂− µ2) ∈ Cδ0 , g(x, x̂) = (2π)−(k1+k2)/2(det(Σ))−1/2; otherwise, g(x, x̂) is

continuous when ‖(x, x̂)‖E ≤ R, and when ‖(x, x̂)‖E > R,

g(x, x̂) ≤(2π)−(k1+k2)/2(det(Σ))−1/2

· exp
{
−(1/8)((x− µ1) + Σ̃

−1/2
11 Σ̃12(x̂− µ2))

′
Σ̃11((x− µ1) + Σ̃

−1/2
11 Σ̃12(x̂− µ2))

}
.

Hence, g(x, x̂) is integrable.

F Equilibrium for Peer Effects

Proof of Proposition 5.1. On one hand, suppose that ξ
e

satisfying (5.4). With a regular

group, we can define ξej,m =
(
Λj(ξ

e
m(j))

)
m

for all j = 1, · · · , n and m = 1, · · · ,M0. (5.4) implies

that

ξ
e
m(i)(x

p
J,m(i))

=

n∑
j=1

E[Hj(u(Xj) + λξ
e
m(j)(X

p
J,m(j))− λ(Λj(ξ

e
m(j)))m(j)(X

p
J,m(j)))|X

p
J,m(i) = xpJ,m(i), z]

=
n∑
j=1

(
Λj(ξ

e
m(j))

)
m(i)

(xpJ,m(i))

=
n∑
j=1

ξej,m(i)(x
p
J,m(i)).

for all i and xpJ,m(i) ∈ XpJ,m(i). Therefore,

ξei,m(xpJ,m) =
(
Λi(ξ

e

m(i))
)
m

(xpJ,m)

=E[Hi(u(Xi) + λξ
e

m(i)(X
p
J,m(i))− λξ

e
i,m(i)(X

p
J,m(i)))|X

p
J,m = xpJ,m, z]

=E[Hi(u(Xi) + λ
∑
j 6=i

ξej,m(i)(X
p
J,m(i)))|X

p
J,m = xpJ,m, z].

On the other hand, given that ξe = (ξe1,1, · · · , ξe1,M0
, · · · , ξen,1, · · · , ξen,M0

) satisfies (5.1), define
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ξ
e

= (ξ
e
1, · · · , ξ

e
M0

) such that

ξ
e
(xpJ,1, · · · , x

p
J,M0

)m = ξ
e
m(xpJ,m) =

n∑
i=1

ξei,m(xpJ,m),

for all m and xpJ,m ∈ XpJ,m. Then we get that

ξei,m(xpJ,m) =E[Hi(u(Xi) + λ
∑
j 6=i

ξej,m(i)(X
p
J,m(i)))|X

p
J,m = xpJ,m, z]

=E[Hi(u(Xi) + λξ
e

m(i)(X
p
J,m(i))− λξ

e
i,m(i)(X

p
J,m(i)))|X

p
J,m = xpJ,m, z].

Applying the Implicit Function theorem in Banach spaces, ξei,m = (Λi(ξ
e
m(i)))m, for all

i = 1, · · · , n and m = 1, · · · ,M0. Therefore,

ξ
e

m(xpJ,m) =

n∑
i=1

ξei,m(xpJ,m)

=

n∑
i=1

(Λi(ξ
e

m(i)))m(xpJ,m)

=

n∑
i=1

E[Hi(u(Xi) + λξ
e

m(i)(X
p
J,m(i))− λξ

e
i,m(i)(X

p
J,m(i)))|X

p
J,m = xpJ,m, z]

=

n∑
i=1

E[Hi(u(Xi) + λξ
e

m(i)(X
p
Ji

)− λ(Λi(ξ
e

m(i)))(X
p
Ji

))|Xp
J,m = xpJ,m, z].

G Proofs for Equilibrium Set Characterization in Binary Choice

Models

Proof for Proposition 6.1. Let ξ denote the total expected outcome in the group. That

is, ξ =
∑n

i=1 ξi =
∑n

1 E[yi]. Given ξ, for agent i, K(ξi, ξ;ui, λ) = Φ(ui + λξ − λξi) − ξi = 0.

K(0, ξ;ui, λ) > 0. K(1, ξ;ui, λ) < 0. ∂K
∂ξi

= −(λφ(ui+λξ−λξi)+1). If λφ(ui+λξ−λξi)+1 > 0,

for each ξ, there is a unique ξi ∈ (0, 1) such that K(ξi, ξ;ui, λ) = 0. Thus, individual expected

outcomes are determined by a function, ξi = G(ui, ξ), such that

∂G(ui, ξ)

∂ξ
=

λφ(ui + λξ − λG(ui, ξ))

λφ(ui + λξ − λG(ui, ξ)) + 1
,
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∂2G(ui, ξ)

∂ξ
2 = −λ

2φ(ui + λξ − λG(ui, ξ))(ui + λξ − λG(ui, ξ))

[λφ(ui + λξ − λG(ui, ξ)) + 1]3
.

ξ is determined by

S(u, ξ) =

n∑
i=1

G(ui, ξ)− ξ.

As a result, ∂S
∂ξ

=
∑n

i=1
∂G(ui,ξ)

∂ξ
− 1 and ∂2S

∂ξ
2 =

∑n
i=1

∂2G(ui,ξ)

∂ξ
2 . As ξi ∈ [0, 1] for i = 1, · · · , n,

the valid equilibrium ξ
e ∈ [0, n]. Since G(ui, ξ) ∈ (0, 1), S(u, 0) > 0 and S(u, n) < 0. Therefore,

there must be an equilibrium between 0 and n.

• When −
√

2π < λ < 0, λφ(ui + λξ − λG(ui, ξ)) + 1 > 0. Thus, ∂G(ui,ξ)

∂ξ
< 0 for all i and

∂S
∂ξ
< 0. As a result, there is a unique equilibrium.

• When λ > 0, ∂G(ui,ξ)

∂ξ
> 0 for all i. If min1≤i≤n ui >

λ
2 , Φ(ui − λ

2 ) − 1
2 > 0. That

is, K(1
2 , 0;ui, λ) > 0. Then for all i, G(ui, ξ) ≥ G(ui, 0) > 1

2 . Therefore, ui + λξ −

λG(ui, ξ) = Φ−1(G(ui, ξ)) > 0. It follows that ∂2G(ui,ξ)

∂ξ
2 < 0 for any ξ ∈ [0, n]. Similarly,

if max1≤i≤n ui <
λ
2 − λn, for any i, Φ(ui + λn − λ

2 ) − 1
2 < 0. That is, K(1

2 , n;ui, λ) < 1
2 .

Then G(ui, ξ) ≤ G(ui, n) < 1
2 . Then ui + λξ− λG(ui, ξ) = Φ−1(G(ui, ξ) < 0. In this case,

∂2G(ui,ξ)

∂ξ
2 > 0 for all ξ ∈ [0, n]. In both cases, ∂2G(ui,ξ)

∂ξ
2 does not change sign as ξ runs in

[0, n]. Hence, there is a unique equilibrium.

Proof of Lemma 6.1. It is easy to see that c(a;λ) = c(−a;λ). c(0;λ) = λφ(0) + 1 >

0. lima→+∞ c(a;λ) = lima→−∞ c(a;λ) = −∞. c
′
(a;λ) = a(3λφ(a) − 2 − 2λa2φ(a)). When

0 < λ < 2
√

2π
3 , 3λφ(a) − 2 − 2λa2φ(a) < 0. Thus, c

′
(a;λ) < 0 for a > 0 and c

′
(a;λ) > 0

for a < 0. Therefore, there is a+ > 0 with the claimed properties. Additionally, da+

dλ =

− (2a2+1)φ(a)
a(3λφ(a)−2−2λa2φ(a))

> 0.

Proof of Proposition 6.2. For any i,

∂3G(ui, ξ)

∂ξ
3 = −λ

3φ(ui + λξ − λG(ui, ξ))c(ui + λξ − λG(ui, ξ);λ)

[λφ(ui + λξ − λG(ui, ξ)) + 1]5
.

∂3S

∂ξ
3 =

∑n
i=1

∂3G(ui,ξ)

∂ξ
3 . As λ > 0, ∂G(ui,ξ)

∂ξ
> 0 for all i. If (6.4) holds, for any i, Φ(ui −

λΦ(a+(λ)))−Φ(a+(λ)) > 0. That is, K(Φ(a+(λ)), 0;ui, λ) > 0. Therefore, G(ui, ξ) ≥ G(ui, 0) >

Φ(a+(λ)) for all ξ ∈ [0, n]. It follows that ui + λξ − λG(ui, ξ) = Φ−1(G(ui, ξ)) > a+(λ). From

Lemma 6.1, c(ui + λξ − λG(ui, ξ);λ) < 0, for all i and ξ ∈ [0, n]. Analogously, under condition
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(6.5), for any i, Φ(ui + λn − λΦ(−a+(λ))) − Φ(−a+(λ)) < 0. Then K(Φ(−a+(λ)), n;ui, λ) <

0. Therefore, G(ui, ξ) ≤ G(ui, n) < Φ(−a+(λ)). That is, for any i. ui + λξ − λG(ui, ξ) =

Φ−1(G(ui, ξ)) < −a+(λ). By Lemma 6.1, c(ui + λb − λG(ui, ξ);λ) < 0, for all i and ξ ∈ [0, n].

Thus, in both cases, ∂3S

∂ξ
3 > 0 when ξ runs from 0 to n. If there are more than three equilibria,

∂2S

∂ξ
2 must change its sign, which is impossible if ∂3S

∂ξ
3 keeps on being positive. Consequently,

under condition (6.4) or (6.5), there are at most three equilibria.

Proof of Proposition 6.3. Fix λ, for any i, K̃(ξi, ξ;ui, λ) = 2Φ(ui + λξ − λξi) − 1 − ξi =

0. As K̃(−1, ξ;ui, λ) > 0, K̃(1, ξ;ui, λ) < 0, and ∂K̃
∂ξi

= −(2λφ(ui + λξ − λξi) + 1), when

2λφ(ui+λξ−λξi) + 1 > 0, for each ξ, there is a unique ξi ∈ [−1, 1] such that K̃(ξi, ξ;ui, λ) = 0.

Thus, ξi is implicitly a function of ξ and ui. Denote this function as G̃(ui, ξ;λ). By computation,

∂G̃(ui, ξ)

∂ξ
=

2λφ(ui + λξ − λG̃(ui, ξ))

2λφ(ui + λξ − λG̃(ui, ξ)) + 1
,

∂2G̃(ui, ξ)

∂ξ
2 = −2λ2φ(ui + λξ − λG̃(ui, ξ))(ui + λξ − λG̃(ui, ξ))

[2λφ(ui + λξ − λG̃(ui, ξ)) + 1]3
.

ξ is determined by

S̃(u, ξ) =
n∑
i=1

G̃(ui, ξ)− ξ.

As a result, ∂S̃
∂ξ

=
∑n

i=1
∂G̃(ui,ξ)

∂ξ
− 1 and ∂2S̃

∂ξ
2 =

∑n
i=1

∂2G̃(ui,ξ)

∂ξ
2 . As ξi ∈ [−1, 1] for i = 1, · · · , n,

the valid equilibrium ξ
e ∈ [−n, n]. Since G̃(ui, ξ) ∈ (−1, 1), S̃(u,−n) > 0 and S̃(u, n) < 0.

Therefore, there must be an equilibrium between −n and n.

• When −
√

2π
2 < λ < 0, 2λφ(ui + λξ − λG̃(ui, ξ)) + 1 > 0. Then ∂G̃(ui,ξ)

∂ξ
< 0 for all i and

∂S̃
∂ξ
< 0. Thus, in this case, there is a unique equilibrium.

• When λ > 0, ∂G̃(ui,ξ)

∂ξ
> 0 for all i. If min1≤i≤n ui > λn, 2Φ(ui − λn) − 1 > 0. That

is, K̃(0,−n;ui, λ) > 0. Then for all i, G̃(ui, ξ) ≥ G̃(ui,−n) > 0. Therefore, ui + λξ −

λG̃(ui, ξ) = Φ−1( G̃(ui,ξ)+1
2 ) > 0. It follows that ∂2G̃(ui,ξ)

∂ξ
2 < 0 for any ξ ∈ [−n, n]. Similarly,

if max1≤i≤n ui < −λn, for any i, 2Φ(ui + λn)− 1 < 0. That is, K̃(0, n;ui, λ) < 0. Hence,

G̃(ui, ξ) ≤ G̃(ui, n) < 0. Then ui + λξ − λG̃(ui, ξ) = Φ−1( G̃(ui,ξ)+1
2 ) < 0. In this case,

∂2G̃(ui,ξ)

∂ξ
2 > 0 for all ξ ∈ [−n, n]. That is to say, in both cases, ∂2G̃(ui,ξ)

∂ξ
2 does not change

its sign as ξ runs in [−n, n]. Hence, there is a unique equilibrium in these two cases.
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Proof of Lemma 6.2. First, it is easy to see that c̃(a;λ) = c̃(−a;λ). c̃(0;λ) = 2λφ(0)+1 > 0.

lima→+∞ c̃(a;λ) = lima→−∞ c̃(a;λ) = −∞. dc̃(a;λ)
da = 2a(3λφ(a)−1−2λφ(a)a2). If 0 < λ <

√
2π
3 ,

3λφ(a)−1−2λφ(a)a2 < 0. Then dc̃(a;λ)
da > 0 if a < 0; and dc̃(a;λ)

da < 0 if a > 0. Thus, a = 0 is the

unique peak for c̃(·;λ). By symmetry, there is ã+ > 0 such that c̃(a;λ) > 0 if −ã+ < a < ã+;

c̃(ã+;λ) = c̃(−ã+;λ) = 0; and c̃(a;λ) < 0 for a > ã+ or a < −ã+. In addition, from c̃(ã+;λ) = 0,

dã+

dλ =
φ(ã+)(1+2ã2

+)

ã+(2λφ(ã+)ã2
++1−3λφ(ã+))

> 0.

Proof of Proposition 6.4. ∂3s̃

∂ξ
3 =

∑n
i=1

∂3G̃

∂ξ
3 , where

∂3G̃

∂ξ
3 = −2λφ(ui + λξ − λG̃(ui;λ))c̃(ui + λξ − λG̃(ui;λ);λ)

(2λ3φ(ui + λξ − λG̃(ui;λ)) + 1)5
.

When λ > 0, the sign of ∂3G̃

∂ξ
3 is determined by the sign of c̃(ui + λξ − λG̃(ui;λ);λ). If

min1≤i≤n ui > λ(2Φ(ã+(λ)) − 1 + n) + ã+(λ), for any i, 2Φ
(
ui − λn − λ(2Φ(ã+(λ)) − 1)

)
−

1 > 2Φ(ã+(λ)) − 1. That is, K̃(2Φ(ã+(λ)) − 1,−n;ui, λ) > 0. Thus, for any ξ ∈ [−n, n],

G(ui, ξ) ≥ G(ui,−n) > 2Φ(ã+(λ))−1. Therefore, ui+λξ−λG(ui, ξ) = Φ−1(G(ui,ξ)+1
2 ) > ã+. It

then follows from Lemma 6.2 that c̃(ui+λξ−λG̃(ui;λ);λ) < 0 for all i and ξ ∈ [−n, n]. Similarly,

if max1≤i≤n ui < λ(2Φ(−ã+(λ))−1−n)−ã+(λ), for all i, 2Φ
(
ui+λn−λ(2Φ(−ã+(λ))−1)

)
−1 <

2Φ(−ã+(λ)) − 1. That is, K̃(2Φ(−ã+(λ)) − 1, n;ui, λ) < 0. Then G(ui, ξ) ≤ G(ui, n) <

2Φ(−ã+(λ)) − 1. Therefore, ui + λξ − λG(ui, ξ) = Φ−1(G(ui,ξ)+1
2 ) < −ã+. Applying Lemma

6.2, c̃(ui + λξ − λG̃(ui;λ);λ) < 0 for all i and ξ ∈ [−n, n]. That is to say, when (6.11) or (6.12)

holds, ∂
3G̃

∂ξ
3 > 0 for all i and ∂3s̃

∂ξ
3 > 0 for all ξ ∈ [−n, n]. In this case, ∂

2s̃

∂ξ
2 does not change its sign

in [−n, n] and there are at most three equilibria.

H Discussions and Extensions

H.1 Group Unobservables

In the previous discussions, all exogenous characteristics, Xg, Xc
i ’s, and Xp

i ’s are observable to

econometricians. In reality, however, some variables are known to agents but unavailable from

the data. For example, researchers studying students’ class performances may not know how

good the teachers are, which is known to the students. Similarly, in market sale data, it is

possible that no information about the wealth of customers is available from the data. But the

firms may have some relevant information. In this section, we take into account unobservable
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variables that are public information in a group and can affect the payoff of all group members.

Modeling them as random effects, we derive the following framework:

yi,g = hi,g(y
∗
i,g), (2.1′)

and

y∗i,g = u(Xg, Xc
i , X

p
i , ζ

g) + λ
∑
j 6=i

Wg,ijE[yj,g|Xp
Ji,g

, Z]− εi,g. (2.2′)

where g is the group index. By (2.2′), we implicitly assume that all group unobervables are

additive and summarize them as a single variable, ζg. Assume that ζg’s are i.i.d. independent

of all the other exogenous variables, social relations, as well as the idiosyncratic shocks. Their

distribution is denoted by the pdf, fζ(·;ϑ).

Because each ζg is publicly known to agents in g, for interactions among group members,

it acts the same as Xg. For any group g, we can characterize the equilibrium set and use a

parametric stochastic selection rule to complete the model. Suppose that the distribution of

equilibrium selection is

ρ(ξe;E(Xg, Xc, Xp, ζg,Wg), α) = ρ(α
′
γ(ξe;Xg, Xc, Xp,Wg);E(Xg, Xc, Xp, ζg,Wg)), (H.1)

with some known selection rule γ(ξe;Xg, Xc, Xp,Wg) and unknown parameter α. The above

form shows that the group unobservables only affect the set of equilibria, but not the selection

rule. Therefore, given a set of equilibria(finite, or approximated by a finite number of equilibrium

expectation functions), the realizations of unobserved group features does not influence the

distribution of equilibrium outcomes. This assumption is reasonable if the selection rule is

consistent with social welfare maximization or Pareto optimization. The selection rules in

previous sections satisfy (H.1). Then we can complete the model and write down the sample

log likelihood function as follows:

logL(Y ;X,W ) =

G∑
g=1

log
[ ∫ ∫

ξe∈E(Xg ,Xc,Xp,ζ̃g ,Wg)

ng∏
i=1

f(yi,g|ξeg)·

ρ(α
′
γ(ξe;Xg, Xc, Xp,Wg);E(Xg, Xc, Xp, ζ̃g,Wg))fζ(ζ̃

g;ϑ)dζ̃g
]
.

(H.2)

Because Xg’s are observed from the data set and ζg’s are not, identification and estimation

methods will be different from those in previous sections.

Assuming that u(·) is a linear function of exogenous characteristics, i.e.,
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u(Xg, Xc
i,g, X

p
i,g, ζ

g) = β0,0 +Xg′β0,1 +Xc′
i,gβ1 +Xp′

i,gβ2 + ζg,

for all i and g. We normalize the mean of ζg to be equal to 0, i.e., E[ζg] = 0. For data

about a single group, applying the technique of identification at infinity, we can identify β1,

β2, and β̃0 = β0,0 + Xg′β0,1 + ζg (as a whole) under certain conditions, based on our previous

discussions. If Hi(·) is strictly increasing, the group average behaviors will be increasing in

β̃0 = β0,0 + Xg′β0,1 + ζg, which helps us identify β0,0, β0,1, and the distribution of ζg’s from

variations across groups.

As for estimation, we can calculate integration over unobserved ζg’s by stochastic simu-

lations. That is to say, we randomly take S draws from the distribution fζ(·;ϑ) for each g,{
ζg,1, · · · , ζg,S

}
and calculate the simulated log likelihood:

log L̂(Y ;X,W ) =

G∑
g=1

log
[ 1

S

S∑
s=1

∫
ξe∈E(Xg ,Xc,Xp,ζg,s,Wg)

ng∏
i=1

f(yi,g|ξeg)·

ρ(α
′
γ(ξe;Xg, Xc, Xp,Wg);E(Xg, Xc, Xp, ζg,s,Wg))

]
.

(H.2′)

H.2 Deterministic Rule

In previous sections, we assume that an equilibrium is selected from the set of equilibria ac-

cording to a stochastic rule. It is also possible to use a deterministic rule. To be specific, let

E(X,Wn) denote a set of equilibria for a group (X,Wn). It is equivalent to the set of solutions

to a system of (generally nonlinear, functional) equations, S(ξ;X,Wn) = 0. Let Π(ξ;X,Wn) de-

note a real-valued function of equilibria and group features (X,Wn). For instance, Π(ξ;X,Wn)

can be the expected total utility of the group, or the expected number of market entrants. We

select an equilibrium to maximize the objective function:

max
ξe

Π(ξe;X,Wn) s.t. S(ξe;X,Wn) = 0. (H.3)

When all exogenous covariates are known to the public, (H.3) is just an ordination optimization

problem. According to our discussion in Section 3, the set of equilibria, or equivalently, the set

of zeros for S(·;X,Wn), is finite. To solve (H.3) is to pick one of those finitely many points

to maximize the criterion function. In general, however, the conditional expectation function,

ξe, is a vector valued function defined on subsets of the Euclidean spaces, (H.3) is a problem

of functional optimization. In that case, we may solve the optimization problem using optimal

control.
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For peer effects, especially, assuming that an equilibrium is selected under a fixed equilibrium

selection rule, it is possible to derive a simpler estimation method. When both Π(ξe;X,Wn)

and S(ξe;X,Wn) are continuous with exogenous characteristics, X, and the set of equilibria

is compact, we can apply the Maximum theorem, which claims that the set of solutions to

(H.3) is an upper-hemicontinuous correspondence of X.2627 If we can assure that there is a

unique maximizer (by imposing some convexity conditiona, for example), the unique optimal

equilibrium will be a continuous function of the group characteristics of X. So do the mean,

ξ
∗
. Therefore, when there is a large number of independent groups, we can non-parametrically

estimate ξ
∗

from group means. By Proposition 5.1, with ξ
∗
, we can recover conditional expec-

tations on individual behaviors, the ξ∗i ’s. Then we can estimate model parameters either from

sample likelihood function or moment conditions, conditioning on the equilibrium represented

by ξ
∗
.

The equilibrium conditional expectation acts like the group aggregate in the model built

by Bisin et al.(2011). It shows that without assuming that the single equilibrium is played

repeatedly over time periods or across markets, as long as the same criterion rule is used and

there is a unique optimizing equilibrium, we can still use the two-step estimation, if the actions

of individuals are influenced by the average of her peers.

26In our discussion on equilibria in the general information structure in Appendix E, we show that under some
conditions, all equilibria is in a compact set. Since the set of zeros of the continuous function, S(·;X,Wn), is
closed. The set of equilibria is itself compact.

27As for the Maximum Theorem, see Stokey et al.(1989) for a proof when criterion, Π(·, X,Wn), and the
constraint, S(·;X,Wn), are functions defined on Euclidean spaces. A proof for general metric spaces can be
found in Wikipedia. Seehttp://en.wikipedia.org/wiki/Maximum theorem.
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Table 1: Binary Choice I: Estimation Comparison

I II III
True parameters G = 100 G = 200 G = 100 G = 200 G = 100 G = 200

β0 0 0.9376 0.9409 0.1851 0.1792 0.0030 0.0056
(0.2174) (0.1566) (0.2127) (0.1470) (0.2537) (0.1773)

β1 1 0.7397 0.7470 0.9237 0.9281 1.0210 1.0165
(0.0957) (0.0662) (0.1050) (0.0674) (0.1299) (0.0848)

β2 1 0.7957 0.7859 0.9103 0.9280 0.9935 1.0116
(0.4130) (0.3037) (0.4138) (0.2889) (0.4648) (0.3134)

λ 0.8 0.6263 0.6266 0.8259 0.8113
(0.0037) (0.0004) (0.1047) (0.0833)

m logL -0.3288 -0.3288 -0.2401 -0.2407 -0.2356 -0.2371
(0.0258) (0.0180) (0.0218) (0.0150) (0.0231) (0.0165)

|λ| - - 0.6267 0.6267
(4.4465× 10−16) (4.4465× 10−16)

runctr 0.6744 0.6735
(0.0496) (0.0343)

Note: Regression I corresponds to the conventional regression without social interactions. Regression II and II allow for
interactions through social relations. Regression II imposes a sufficient condition on λ, assumes equilibrium uniqueness, and
uses the method of contraction mapping iteration for equilibrium computation. Regression III does not impose restrictions
on the interaction intensity, λ, and uses the homotopy continuation method for equilibrium computation. |λ| is the upper
bound on the intensity of social interactions, corresponding to the sufficient condition for contraction mapping in Yang and
Lee(2017). runctr denotes the proportion of groups in which that condition is violated under the true parameter values.
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Table 2: Binary Choice II: Estimation Comparison for Moderate Interactions

True parameters I II III IV

β0 0 0.0298 -0.0010 -0.0011 0.0014
(0.0741) (0.0483) (0.0484) (0.0493)

β1 1 1.0322 1.0219 1.0219 1.0241
(0.0976) (0.1004) (0.1005) (0.0979)

β2 1 1.2152 0.9906 0.9894 1.0175
(0.3356) (0.2666) (0.2678) (0.2848)

λ 0.2 0.1962 0.1962 0.1707
(0.0294) (0.0294) (0.0695)

m logL -0.4804 -0.4594 -0.4594 -0.4620
(0.0247) (0.0246) (0.0246) (0.0264)

|λ| 0.3133
(1.6758× 10−16)

runctr 0
(0)

ne 1
(0)

rm 0
(0)

n̂e 1
(0)

r̂m 0
(0)

Note: In each simulation, the number of independent groups is G = 100. The population of every group is n = 5. Regression
I corresponds to the conventional regression without social interactions. Regressions II, III, and IV take social interactions
into account. Regressions II and III assumes equilibrium uniqueness. Regression II restricts the interaction intensity to
satisfy the sufficient condition in Yang and Lee(2017) and uses contraction mapping iterations to solve for the equilibrium.
Regression III does not restrict the interaction intensity and computes the equilibrium through solving nonlinear equations
by the Newton’s method. Regression IV allows for equilibrium multiplicity, uses the homotopy continuation method to
solve for the equilibrium set, and select an equilibrium according to the expected total utilities to complete the model.
|λ| stands for the upper bound on interaction intensity which ensures equilibrium uniqueness in a sample according to
Yang and Lee(2017). runctr represents the proportion of groups which violate that sufficient condition. ne and n̂e refer to
respectively the average sample and estimated number of equilibria in a group. rm and r̂m report the sample and estimated
proportion of groups with multiple equilibria respectively. Numbers in parentheses are standard deviations.
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Table 3: Binary Choice II: Estimation Comparison for Large Interactions

True parameters I II III IV

β0 0 0.0899 0.0021 -0.0042 0.0439
(0.1339) (0.0431) (0.0525) (0.0694)

β1 1 0.4767 0.5191 0.5748 1.0544
(0.0525) (0.0636) (0.2164) (0.2492)

β2 1 1.1328 0.6596 0.6197 0.9346
(0.4606) (0.2650) (0.3941) (0.3442)

λ 0.8 0.3109 0.3900 0.8325
(0.0039) (0.0277) (0.0968)

α 1 1.0776
(0.6221)

m logL -0.6031 -0.4312 -0.3989 -0.1218
(0.0200) (0.0349) (0.0477) (0.0235)

|λ| 0.3133
(2.2232× 10−16)

runctr 1
(0)

ne 2.2918
(0.0784)

rm 0.7811
(0.0407)

n̂e 2.2487
(0.1716)

r̂m 0.7642
(0.1015)

Note: In each simulation, the number of independent groups is G = 100. The population of every group is n = 5. Regression
I corresponds to the conventional regression without social interactions. Regressions II, III, and IV take social interactions
into account. Regressions II and III assumes equilibrium uniqueness. Regression II restricts the interaction intensity to
satisfy the sufficient condition in Yang and Lee(2017) and uses contraction mapping iterations to solve for the equilibrium.
Regression III does not restrict the interaction intensity and computes the equilibrium through solving nonlinear equations
by the Newton’s method. Regression IV allows for equilibrium multiplicity, uses the homotopy continuation method to
solve for the equilibrium set, and select an equilibrium according to the expected total utilities to complete the model.
|λ| stands for the upper bound on interaction intensity which ensures equilibrium uniqueness in a sample according to
Yang and Lee(2017). runctr represents the proportion of groups which violate that sufficient condition. ne and n̂e refer to
respectively the average sample and estimated number of equilibria in a group. rm and r̂m report the sample and estimated
proportion of groups with multiple equilibria respectively. Numbers in parentheses are standard deviations.
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Figure 1: The Haar Basis Functions

85



−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

8

10

tpsi

n=2, u=1

 

 
λ=0
λ=0.2
λ=0.4
λ=0.6
λ=0.8
λ=1

−10 −5 0 5 10
−10

−5

0

5

10

15

tpsi

n=5, u=1

 

 
λ=0
λ=0.2
λ=0.4
λ=0.6
λ=0.8
λ=1

−15 −10 −5 0 5 10 15
−10

−5

0

5

10

15

20

25

tpsi

n=10, u=1

 

 
λ=0
λ=0.2
λ=0.4
λ=0.6
λ=0.8
λ=1

Figure 2: Equilibrium Illustration for Binary Choice I with Influences from Peers A

Note: In this figure, “tpsi” refers to the expected total outcomes in a group of symmetric members for the Binary Choice
Model I with influences from peers. For each value of λ, an equilibrium expected total outcome is a zero of a nonlinear
function, whose graph is depicted as a curve. The characteristics of the equilibrium set may differ as the group
population, n, and homogeneous individual utility, u, vary. The left, middle, and right diagrams respectively correspond
to three cases: n = 2, u = 2; n = 5, u = 2; and n = 10, u = 2.
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Figure 3: Equilibrium Illustration for Binary Choice I with Influences from Peers B

Note: In this figure, “tpsi” refers to the expected total outcomes in a group of asymmetric members for the Binary Choice
Model I with Influences from peers. For each value of λ, an equilibrium expected total outcome is a zero of a nonlinear
function, whose graph is depicted as a curve. The characteristics of the equilibrium set may differ as the group population,
n, and heterogeneous individual utilities, ui’s, vary. The left, middle, and right diagrams respectively correspond to three
cases: n = 2, maxi ui = 2, mini ui = 1; n = 5, maxi ui = 2, mini ui = 1; and n = 10, maxi ui = 2, mini ui = 1.
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Figure 4: Equilibrium Illustration for Binary Choice I with Influences from Peers C

Note: In this figure, “tpsi” refers to the expected total outcomes in a group of symmetric members for the Binary Choice
Model I with influences from peers. For each value of λ, an equilibrium expected total outcome is a zero of a nonlinear
function, whose graph is depicted as a curve. The characteristics of the equilibrium set may differ as the group
population, n, and homogeneous individual utility, u, vary. The left, middle, and right diagrams respectively correspond
to three cases: n = 2, u = −2; n = 5, u = −2; and n = 10, u = −2.
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Figure 5: Equilibrium Illustration for Binary Choice I with Influences from Peers D

Note: In this figure, “tpsi” refers to the expected total outcomes in a group of asymmetric members for the Binary Choice
Model I with Influences from peers. For each value of λ, an equilibrium expected total outcome is a zero of a nonlinear
function, whose graph is depicted as a curve. The characteristics of the equilibrium set may differ as the group population,
n, and heterogeneous individual utilities, ui’s, vary. The left, middle, and right diagrams respectively correspond to three
cases: n = 2, maxi ui = −2, mini ui = −3; n = 5, maxi ui = −2, mini ui = −3; and n = 10, maxi ui = −2, mini ui = −3.
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Figure 6: Equilibrium Illustration for Binary Choice I with General Social Relations

Note: This figure shows the features of the equilibrium set in Binary Choice Model I as the interaction intensity, λ,
increases, for a sample of G = 100 groups with homogeneous group population n = 5. ne represents the average number
of equilibria of the sample. rm is the ratio of groups with more than one equilibria. ru stands for the proportion of groups
whose social relation matrix does not satisfy the sufficient condition for contraction mapping in Yang and Lee(2017).
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Figure 7: Equilibrium Outcomes for Binary Choice I with General Social Relations

Note: This figure shows the features of the equilibrium outcomes in Binary Choice Model I as the interaction intensity, λ,
increases, for a sample of G = 100 groups with homogeneous group population n = 5. me, r1, and r0, respectively
represent the average expected (individual) outcomes, the ratio of agents who choose “1”, and the ratio of agents who
choose “0”, of the unique equilibrium.
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Figure 8: Equilibrium Illustration for Binary Choice II with Influences from Peers A

Note: In this figure, “tpsi” refers to the expected total outcomes in a group of symmetric members for the Binary Choice
Model II with influences from peers. For each value of λ, an equilibrium expected total outcome is a zero of a nonlinear
function, whose graph is depicted as a curve. The characteristics of the equilibrium set may differ as the group
population, n, and homogeneous individual utility, u, vary. The left, middle, and right diagrams respectively correspond
to three cases: n = 2, u = n+ 1; n = 5, u = n+ 1; and n = 10, u = n+ 1.
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Figure 9: Equilibrium Illustration for Binary Choice II with Influences from Peers B

Note: In this figure, “tpsi” refers to the expected total outcomes in a group of asymmetric members for the Binary
Choice Model II with Influences from peers. For each value of λ, an equilibrium expected total outcome is a zero of a
nonlinear function, whose graph is depicted as a curve. The characteristics of the equilibrium set may differ as the group
population, n, and heterogeneous individual utilities, ui’s, vary. The left, middle, and right diagrams respectively
correspond to three cases: n = 2, maxi ui = n+ 3, mini ui = n+ 1; n = 5, maxi ui = n+ 3, mini ui = n+ 1; and n = 10,
maxi ui = n+ 3, mini ui = n+ 1.
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Figure 10: Equilibrium Illustration for Binary Choice II with Influences from Peers C

Note: In this figure, “tpsi” refers to the expected total outcomes in a group of symmetric members for the Binary Choice
Model II with influences from peers. For each value of λ, an equilibrium expected total outcome is a zero of a nonlinear
function, whose graph is depicted as a curve. The characteristics of the equilibrium set may differ as the group
population, n, and homogeneous individual utility, u, vary. The left, middle, and right diagrams respectively correspond
to three cases: n = 2, u = 1; n = 5, u = 1; and n = 10, u = 1.
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Figure 11: Equilibrium Illustration for Binary Choice II with Influences from Peers D

Note: In this figure, “tpsi” refers to the expected total outcomes in a group of asymmetric members for the Binary Choice
Model II with Influences from peers. For each value of λ, an equilibrium expected total outcome is a zero of a nonlinear
function, whose graph is depicted as a curve. The characteristics of the equilibrium set may differ as the group population,
n, and heterogeneous individual utilities, ui’s, vary. The left, middle, and right diagrams respectively correspond to three
cases: n = 2, maxi ui = 2, mini ui = 1; n = 5, maxi ui = 2, mini ui = 1; and n = 10, maxi ui = 2, mini ui = 1.
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Figure 12: Equilibrium Illustration for Binary Choice II with General Social Relations

Note: This figure shows the features of the equilibrium set in Binary Choice Model II as the interaction intensity, λ,
increases, for a sample of G = 100 groups with homogeneous group population n = 5. ne represents the average number
of equilibria of the sample. rm is the ratio of groups with more than one equilibria. ru stands for the proportion of groups
whose social relation matrix does not satisfy the sufficient condition for contraction mapping in Yang and Lee(2017).
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Figure 13: Equilibrium Outcomes for Binary Choice II with General Social Relations

Note: This figure shows the features of the equilibrium outcomes in Binary Choice Model II as the interaction intensity,
λ, increases, for a sample of G = 100 groups with homogeneous group population n = 5. me, my , rp, and rm,
respectively represent the average expected (individual) outcomes, the average individual choices, the ratio of agents who
choose “1”, and the ratio of agents who choose “-1”, of the unique/selected equilibrium.
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Figure 14: Homotopic Mappings on Sphere for Binary Choices
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